Amortized Bayesian Experimental Design for Decision-Making
- URL: http://arxiv.org/abs/2411.02064v1
- Date: Mon, 04 Nov 2024 13:06:46 GMT
- Title: Amortized Bayesian Experimental Design for Decision-Making
- Authors: Daolang Huang, Yujia Guo, Luigi Acerbi, Samuel Kaski,
- Abstract summary: We present an amortized decision-aware BED framework that prioritizes maximizing downstream decision utility.
We introduce a novel architecture, the Transformer Neural Decision Process (TNDP), capable of instantly proposing the next experimental design.
We demonstrate the performance of our method across several tasks, showing that it can deliver informative designs and facilitate accurate decision-making.
- Score: 22.250312394159945
- License:
- Abstract: Many critical decisions, such as personalized medical diagnoses and product pricing, are made based on insights gained from designing, observing, and analyzing a series of experiments. This highlights the crucial role of experimental design, which goes beyond merely collecting information on system parameters as in traditional Bayesian experimental design (BED), but also plays a key part in facilitating downstream decision-making. Most recent BED methods use an amortized policy network to rapidly design experiments. However, the information gathered through these methods is suboptimal for down-the-line decision-making, as the experiments are not inherently designed with downstream objectives in mind. In this paper, we present an amortized decision-aware BED framework that prioritizes maximizing downstream decision utility. We introduce a novel architecture, the Transformer Neural Decision Process (TNDP), capable of instantly proposing the next experimental design, whilst inferring the downstream decision, thus effectively amortizing both tasks within a unified workflow. We demonstrate the performance of our method across several tasks, showing that it can deliver informative designs and facilitate accurate decision-making.
Related papers
- Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Adaptive Instrument Design for Indirect Experiments [48.815194906471405]
Unlike RCTs, indirect experiments estimate treatment effects by leveragingconditional instrumental variables.
In this paper we take the initial steps towards enhancing sample efficiency for indirect experiments by adaptively designing a data collection policy.
Our main contribution is a practical computational procedure that utilizes influence functions to search for an optimal data collection policy.
arXiv Detail & Related papers (2023-12-05T02:38:04Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality.
It is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies.
We propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used.
arXiv Detail & Related papers (2023-08-11T12:22:37Z) - Task-specific experimental design for treatment effect estimation [59.879567967089145]
Large randomised trials (RCTs) are the standard for causal inference.
Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought.
We develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications.
arXiv Detail & Related papers (2023-06-08T18:10:37Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - Efficient Real-world Testing of Causal Decision Making via Bayesian
Experimental Design for Contextual Optimisation [12.37745209793872]
We introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making.
Our method is used for the data-efficient evaluation of the regret of past treatment assignments.
arXiv Detail & Related papers (2022-07-12T01:20:11Z) - Implicit Deep Adaptive Design: Policy-Based Experimental Design without
Likelihoods [24.50829695870901]
implicit Deep Adaptive Design (iDAD) is a new method for performing adaptive experiments in real-time with implicit models.
iDAD amortizes the cost of Bayesian optimal experimental design (BOED) by learning a design policy network upfront.
arXiv Detail & Related papers (2021-11-03T16:24:05Z) - Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design [11.414086057582324]
We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of performing sequential adaptive experiments.
We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.
arXiv Detail & Related papers (2021-03-03T14:43:48Z) - Diffusion Approximations for a Class of Sequential Testing Problems [0.0]
We study the problem of a seller who wants to select an optimal assortment of products to launch into the marketplace.
Motivated by emerging practices in e-commerce, we assume that the seller is able to use a crowdvoting system to learn these preferences.
arXiv Detail & Related papers (2021-02-13T23:21:29Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Optimal Experimental Design for Staggered Rollouts [11.187415608299075]
We study the design and analysis of experiments conducted on a set of units over multiple time periods where the starting time of the treatment may vary by unit.
We propose a new algorithm, the Precision-Guided Adaptive Experiment (PGAE) algorithm, that addresses the challenges at both the design stage and at the stage of estimating treatment effects.
arXiv Detail & Related papers (2019-11-09T19:46:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.