論文の概要: Training on test proteins improves fitness, structure, and function prediction
- arxiv url: http://arxiv.org/abs/2411.02109v1
- Date: Mon, 04 Nov 2024 14:23:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:27:23.731857
- Title: Training on test proteins improves fitness, structure, and function prediction
- Title(参考訳): テストタンパク質の訓練は適合性、構造、機能予測を改善する
- Authors: Anton Bushuiev, Roman Bushuiev, Nikola Zadorozhny, Raman Samusevich, Hannes Stärk, Jiri Sedlar, Tomáš Pluskal, Josef Sivic,
- Abstract要約: 大規模データセット上での自己教師付き事前トレーニングは、一般化を強化するための一般的な方法である。
そこで本研究では,テスト時に自己教師型微調整を行う手法を導入し,モデルがハエの関心を持つテストタンパク質に適応できるようにした。
本手法は,タンパク質の適合度予測のための標準ベンチマークにおいて,新しい最先端結果をもたらすことを示す。
- 参考スコア(独自算出の注目度): 18.176929152066872
- License:
- Abstract: Data scarcity and distribution shifts often hinder the ability of machine learning models to generalize when applied to proteins and other biological data. Self-supervised pre-training on large datasets is a common method to enhance generalization. However, striving to perform well on all possible proteins can limit model's capacity to excel on any specific one, even though practitioners are often most interested in accurate predictions for the individual protein they study. To address this limitation, we propose an orthogonal approach to achieve generalization. Building on the prevalence of self-supervised pre-training, we introduce a method for self-supervised fine-tuning at test time, allowing models to adapt to the test protein of interest on the fly and without requiring any additional data. We study our test-time training (TTT) method through the lens of perplexity minimization and show that it consistently enhances generalization across different models, their scales, and datasets. Notably, our method leads to new state-of-the-art results on the standard benchmark for protein fitness prediction, improves protein structure prediction for challenging targets, and enhances function prediction accuracy.
- Abstract(参考訳): データ不足と分散シフトは、しばしば、タンパク質やその他の生物学的データに適用した場合に、機械学習モデルが一般化する能力を妨げている。
大規模データセット上での自己教師付き事前トレーニングは、一般化を強化するための一般的な方法である。
しかしながら、あらゆる可能なタンパク質でうまく機能するように努力することは、モデルが特定のタンパク質に優れた能力を発揮できる能力を制限することができるが、実践者は研究する個々のタンパク質の正確な予測に最も関心がある。
この制限に対処するため、一般化を実現するための直交的アプローチを提案する。
自己教師型プレトレーニングの頻度に基づいて,テスト時に自己教師型微調整を行う手法を導入する。
我々は, パープレキシティ最小化のレンズを用いてテスト時間トレーニング(TTT)法について検討し, 異なるモデル, スケール, データセット間の一般化を継続的に向上することを示す。
特に,本手法は,タンパク質の適合度予測の標準ベンチマークに新たな最先端結果をもたらし,タンパク質構造予測の改善と機能予測の精度の向上に寄与する。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Metalic: Meta-Learning In-Context with Protein Language Models [5.868595531658237]
このような予測タスクの有望なテクニックとして機械学習が登場した。
データ不足のため、私たちはメタラーニングがタンパク質工学の進歩に重要な役割を果たすと信じています。
論文 参考訳(メタデータ) (2024-10-10T20:19:35Z) - Protein-Mamba: Biological Mamba Models for Protein Function Prediction [18.642511763423048]
タンパク質-マンバは、タンパク質機能予測を改善するために、自己教師付き学習と微調整の両方を活用する新しい2段階モデルである。
実験の結果,Protein-Mambaはいくつかの最先端手法と比較して,競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-22T22:51:56Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - DeepGATGO: A Hierarchical Pretraining-Based Graph-Attention Model for
Automatic Protein Function Prediction [4.608328575930055]
自動タンパク質機能予測(AFP)は大規模多ラベル分類問題に分類される。
現在、一般的な手法は主にタンパク質関連情報と遺伝子オントロジー(GO)の用語を組み合わせて、最終的な機能予測を生成する。
本稿では,タンパク質配列とGO項ラベルを階層的に処理するシークエンスベースの階層予測手法であるDeepGATGOを提案する。
論文 参考訳(メタデータ) (2023-07-24T07:01:32Z) - CCPL: Cross-modal Contrastive Protein Learning [47.095862120116976]
我々は、新しい教師なしタンパク質構造表現事前学習法、クロスモーダルコントラスト型タンパク質学習(CCPL)を導入する。
CCPLは堅牢なタンパク質言語モデルを活用し、教師なしのコントラストアライメントを用いて構造学習を強化する。
さまざまなベンチマークでモデルを評価し,フレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2023-03-19T08:19:10Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
エンドツーエンドの表現学習フレームワークである辞書学習(R2DL)による表現学習を提案する。
R2DLは、タンパク質配列の埋め込みを学ぶために、事前訓練された英語モデルを再プログラムする。
我々のモデルは,事前訓練および標準教師付き手法によって設定されたベースラインに対して,最大105ドルの精度でデータ効率を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-05T15:55:18Z) - SESNet: sequence-structure feature-integrated deep learning method for
data-efficient protein engineering [6.216757583450049]
タンパク質変異体の適合度を予測するための教師付きディープラーニングモデルであるSESNetを開発した。
SESNetは,シーケンスと関数の関係を予測するための最先端モデルよりも優れていることを示す。
我々のモデルは、タンパク質変異体の適合性の予測において、特に高次変異体に対して驚くほど高い精度を達成することができる。
論文 参考訳(メタデータ) (2022-12-29T01:49:52Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
既存のアプローチは通常、多くの未ラベルアミノ酸配列で事前訓練されたタンパク質言語モデルである。
まず,タンパク質の幾何学的特徴を学習するための単純かつ効果的なエンコーダを提案する。
関数予測と折り畳み分類の両タスクの実験結果から,提案した事前学習法は,より少ないデータを用いた最先端のシーケンスベース手法と同等あるいは同等であることがわかった。
論文 参考訳(メタデータ) (2022-03-11T17:52:13Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。