論文の概要: One protein is all you need
- arxiv url: http://arxiv.org/abs/2411.02109v2
- Date: Mon, 20 Oct 2025 22:44:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:02.721995
- Title: One protein is all you need
- Title(参考訳): 必要なタンパク質は1つだけ
- Authors: Anton Bushuiev, Roman Bushuiev, Olga Pimenova, Nikola Zadorozhny, Raman Samusevich, Elisabet Manaskova, Rachel Seongeun Kim, Hannes Stärk, Jiri Sedlar, Martin Steinegger, Tomáš Pluskal, Josef Sivic,
- Abstract要約: トレーニングデータ以外の一般化は、生物学における機械学習における中心的な課題である。
タンパク質テストタイムトレーニング(ProteinTTT)法は,異なるモデル,サイズ,データセット間の一般化を一貫して促進することを示す。
- 参考スコア(独自算出の注目度): 17.551862138613405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalization beyond training data remains a central challenge in machine learning for biology. A common way to enhance generalization is self-supervised pre-training on large datasets. However, aiming to perform well on all possible proteins can limit a model's capacity to excel on any specific one, whereas experimentalists typically need accurate predictions for individual proteins they study, often not covered in training data. To address this limitation, we propose a method that enables self-supervised customization of protein language models to one target protein at a time, on the fly, and without assuming any additional data. We show that our Protein Test-Time Training (ProteinTTT) method consistently enhances generalization across different models, their sizes, and datasets. ProteinTTT improves structure prediction for challenging targets, achieves new state-of-the-art results on protein fitness prediction, and enhances function prediction on two tasks. Through two challenging case studies, we also show that customization via ProteinTTT achieves more accurate antibody-antigen loop modeling and enhances 19% of structures in the Big Fantastic Virus Database, delivering improved predictions where general-purpose AlphaFold2 and ESMFold struggle.
- Abstract(参考訳): トレーニングデータ以外の一般化は、生物学における機械学習における中心的な課題である。
一般化を強化する一般的な方法は、大規模なデータセット上での自己教師付き事前トレーニングである。
しかしながら、あらゆる可能なタンパク質をうまく利用するためには、モデルが特定のタンパク質を排他的に処理する能力を制限することができるが、実験者は一般的に研究対象のタンパク質を正確に予測する必要があるが、しばしば訓練データには含まれない。
この制限に対処するために,タンパク質言語モデルを1つの標的タンパク質に1回,フライ時に,追加データを仮定することなく,自己教師付きでカスタマイズする手法を提案する。
タンパク質テストタイムトレーニング(ProteinTTT)法は,異なるモデル,サイズ,データセット間の一般化を一貫して促進することを示す。
タンパク質TTTは、挑戦対象の構造予測を改善し、タンパク質の適合性予測に関する新しい最先端の結果を達成し、2つのタスクにおける機能予測を強化する。
2つの挑戦的なケーススタディを通じて、タンパク質TTTによるカスタマイズにより、より正確な抗体-抗原ループモデリングが達成され、Big Fantastic Virus Databaseの19%が強化され、汎用AlphaFold2とESMFoldが苦戦する予測が向上することを示した。
関連論文リスト
- Exploring zero-shot structure-based protein fitness prediction [0.5524804393257919]
我々は、事前学習された機械学習モデルを用いて、タンパク質配列の変化による適合性についてゼロショット予測を行う。
構造モデルに対するいくつかのモデル選択と、下流の適合度予測に対する影響を評価する。
論文 参考訳(メタデータ) (2025-04-23T17:01:09Z) - SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Metalic: Meta-Learning In-Context with Protein Language Models [5.868595531658237]
このような予測タスクの有望なテクニックとして機械学習が登場した。
データ不足のため、私たちはメタラーニングがタンパク質工学の進歩に重要な役割を果たすと信じています。
論文 参考訳(メタデータ) (2024-10-10T20:19:35Z) - Protein-Mamba: Biological Mamba Models for Protein Function Prediction [18.642511763423048]
タンパク質-マンバは、タンパク質機能予測を改善するために、自己教師付き学習と微調整の両方を活用する新しい2段階モデルである。
実験の結果,Protein-Mambaはいくつかの最先端手法と比較して,競争力を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-22T22:51:56Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - DeepGATGO: A Hierarchical Pretraining-Based Graph-Attention Model for
Automatic Protein Function Prediction [4.608328575930055]
自動タンパク質機能予測(AFP)は大規模多ラベル分類問題に分類される。
現在、一般的な手法は主にタンパク質関連情報と遺伝子オントロジー(GO)の用語を組み合わせて、最終的な機能予測を生成する。
本稿では,タンパク質配列とGO項ラベルを階層的に処理するシークエンスベースの階層予測手法であるDeepGATGOを提案する。
論文 参考訳(メタデータ) (2023-07-24T07:01:32Z) - CCPL: Cross-modal Contrastive Protein Learning [47.095862120116976]
我々は、新しい教師なしタンパク質構造表現事前学習法、クロスモーダルコントラスト型タンパク質学習(CCPL)を導入する。
CCPLは堅牢なタンパク質言語モデルを活用し、教師なしのコントラストアライメントを用いて構造学習を強化する。
さまざまなベンチマークでモデルを評価し,フレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2023-03-19T08:19:10Z) - Reprogramming Pretrained Language Models for Protein Sequence
Representation Learning [68.75392232599654]
エンドツーエンドの表現学習フレームワークである辞書学習(R2DL)による表現学習を提案する。
R2DLは、タンパク質配列の埋め込みを学ぶために、事前訓練された英語モデルを再プログラムする。
我々のモデルは,事前訓練および標準教師付き手法によって設定されたベースラインに対して,最大105ドルの精度でデータ効率を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-01-05T15:55:18Z) - SESNet: sequence-structure feature-integrated deep learning method for
data-efficient protein engineering [6.216757583450049]
タンパク質変異体の適合度を予測するための教師付きディープラーニングモデルであるSESNetを開発した。
SESNetは,シーケンスと関数の関係を予測するための最先端モデルよりも優れていることを示す。
我々のモデルは、タンパク質変異体の適合性の予測において、特に高次変異体に対して驚くほど高い精度を達成することができる。
論文 参考訳(メタデータ) (2022-12-29T01:49:52Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
既存のアプローチは通常、多くの未ラベルアミノ酸配列で事前訓練されたタンパク質言語モデルである。
まず,タンパク質の幾何学的特徴を学習するための単純かつ効果的なエンコーダを提案する。
関数予測と折り畳み分類の両タスクの実験結果から,提案した事前学習法は,より少ないデータを用いた最先端のシーケンスベース手法と同等あるいは同等であることがわかった。
論文 参考訳(メタデータ) (2022-03-11T17:52:13Z) - Conformal Prediction Under Feedback Covariate Shift for Biomolecular Design [56.86533144730384]
本稿では,トレーニングデータとテストデータが統計的に依存した環境での予測不確実性を定量化する手法を提案する。
モチベーション・ユースケースとして,本手法が設計したタンパク質の適合性予測の不確かさを定量化する方法を実データで示す。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。