Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security
- URL: http://arxiv.org/abs/2411.02112v1
- Date: Mon, 04 Nov 2024 14:27:10 GMT
- Title: Multi-modal biometric authentication: Leveraging shared layer architectures for enhanced security
- Authors: Vatchala S, Yogesh C, Yeshwanth Govindarajan, Krithik Raja M, Vishal Pramav Amirtha Ganesan, Aashish Vinod A, Dharun Ramesh,
- Abstract summary: We introduce a novel multi-modal biometric authentication system that integrates facial, vocal, and signature data to enhance security measures.
Our model architecture incorporates dual shared layers alongside modality-specific enhancements for comprehensive feature extraction.
Our approach demonstrates significant improvements in authentication accuracy and robustness, paving the way for advanced secure identity verification solutions.
- Score: 0.0
- License:
- Abstract: In this study, we introduce a novel multi-modal biometric authentication system that integrates facial, vocal, and signature data to enhance security measures. Utilizing a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), our model architecture uniquely incorporates dual shared layers alongside modality-specific enhancements for comprehensive feature extraction. The system undergoes rigorous training with a joint loss function, optimizing for accuracy across diverse biometric inputs. Feature-level fusion via Principal Component Analysis (PCA) and classification through Gradient Boosting Machines (GBM) further refine the authentication process. Our approach demonstrates significant improvements in authentication accuracy and robustness, paving the way for advanced secure identity verification solutions.
Related papers
- Semi-Supervised Multi-Task Learning Based Framework for Power System Security Assessment [0.0]
This paper develops a novel machine learning-based framework using Semi-Supervised Multi-Task Learning (SS-MTL) for power system dynamic security assessment.
The learning algorithm underlying the proposed framework integrates conditional masked encoders and employs multi-task learning for classification-aware feature representation.
Various experiments on the IEEE 68-bus system were conducted to validate the proposed method.
arXiv Detail & Related papers (2024-07-11T22:42:53Z) - Straight Through Gumbel Softmax Estimator based Bimodal Neural Architecture Search for Audio-Visual Deepfake Detection [6.367999777464464]
multimodal deepfake detectors rely on conventional fusion methods, such as majority rule and ensemble voting.
In this paper, we introduce the Straight-through Gumbel-Softmax framework, offering a comprehensive approach to search multimodal fusion model architectures.
Experiments on the FakeAVCeleb and SWAN-DF datasets demonstrated an impressive AUC value 94.4% achieved with minimal model parameters.
arXiv Detail & Related papers (2024-06-19T09:26:22Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - AttackNet: Enhancing Biometric Security via Tailored Convolutional Neural Network Architectures for Liveness Detection [20.821562115822182]
AttackNet is a bespoke Convolutional Neural Network architecture designed to combat spoofing threats in biometric systems.
It offers a layered defense mechanism, seamlessly transitioning from low-level feature extraction to high-level pattern discernment.
Benchmarking our model across diverse datasets affirms its prowess, showcasing superior performance metrics in comparison to contemporary models.
arXiv Detail & Related papers (2024-02-06T07:22:50Z) - CMFDFormer: Transformer-based Copy-Move Forgery Detection with Continual
Learning [52.72888626663642]
Copy-move forgery detection aims at detecting duplicated regions in a suspected forged image.
Deep learning based copy-move forgery detection methods are in the ascendant.
We propose a Transformer-style copy-move forgery network named as CMFDFormer.
We also provide a novel PCSD continual learning framework to help CMFDFormer handle new tasks.
arXiv Detail & Related papers (2023-11-22T09:27:46Z) - Accelerated Fingerprint Enhancement: A GPU-Optimized Mixed Architecture
Approach [47.87570819350573]
This document presents a preliminary approach to latent fingerprint enhancement, fundamentally designed around a mixed Unet architecture.
It combines the capabilities of the Resnet-101 network and Unet encoder, aiming to form a potentially powerful composite.
One innovative element of this approach includes a novel Fingerprint Enhancement Gabor layer, specifically designed for GPU computations.
arXiv Detail & Related papers (2023-06-01T01:19:32Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
We describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign.
Our approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios.
Results show that the proposed approach outperforms all the rule-based fusion schemes.
arXiv Detail & Related papers (2022-11-24T12:11:22Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Deep Hashing for Secure Multimodal Biometrics [1.7188280334580195]
We present a framework for feature-level fusion that generates a secure multimodal template from each user's face and iris biometrics.
We employ a hybrid secure architecture by combining cancelable biometrics with secure sketch techniques.
The proposed approach also provides cancelability and unlinkability of the templates along with improved privacy of the biometric data.
arXiv Detail & Related papers (2020-12-29T14:15:05Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.