Generating the Traces You Need: A Conditional Generative Model for Process Mining Data
- URL: http://arxiv.org/abs/2411.02131v1
- Date: Mon, 04 Nov 2024 14:44:20 GMT
- Title: Generating the Traces You Need: A Conditional Generative Model for Process Mining Data
- Authors: Riccardo Graziosi, Massimiliano Ronzani, Andrei Buliga, Chiara Di Francescomarino, Francesco Folino, Chiara Ghidini, Francesca Meneghello, Luigi Pontieri,
- Abstract summary: We introduce a conditional model for process data generation based on a conditional variational autoencoder (CVAE)
CVAE for process mining faces specific challenges due to the multiperspective nature of the data and the need to adhere to control-flow rules.
- Score: 10.914597458295248
- License:
- Abstract: In recent years, trace generation has emerged as a significant challenge within the Process Mining community. Deep Learning (DL) models have demonstrated accuracy in reproducing the features of the selected processes. However, current DL generative models are limited in their ability to adapt the learned distributions to generate data samples based on specific conditions or attributes. This limitation is particularly significant because the ability to control the type of generated data can be beneficial in various contexts, enabling a focus on specific behaviours, exploration of infrequent patterns, or simulation of alternative 'what-if' scenarios. In this work, we address this challenge by introducing a conditional model for process data generation based on a conditional variational autoencoder (CVAE). Conditional models offer control over the generation process by tuning input conditional variables, enabling more targeted and controlled data generation. Unlike other domains, CVAE for process mining faces specific challenges due to the multiperspective nature of the data and the need to adhere to control-flow rules while ensuring data variability. Specifically, we focus on generating process executions conditioned on control flow and temporal features of the trace, allowing us to produce traces for specific, identified sub-processes. The generated traces are then evaluated using common metrics for generative model assessment, along with additional metrics to evaluate the quality of the conditional generation
Related papers
- Plug-and-Play Controllable Generation for Discrete Masked Models [27.416952690340903]
This article makes discrete masked models for the generative modeling of discrete data controllable.
We propose a novel plug-and-play framework based on importance sampling that bypasses the need for training a conditional score.
Our framework is agnostic to the choice of control criteria, requires no gradient information, and is well-suited for tasks such as posterior sampling, Bayesian inverse problems, and constrained generation.
arXiv Detail & Related papers (2024-10-03T02:00:40Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Controllable Data Generation Via Iterative Data-Property Mutual Mappings [13.282793266390316]
We propose a framework to enhance VAE-based data generators with property controllability and ensure disentanglement.
The proposed framework is implemented on four VAE-based controllable generators to evaluate its performance on property error, disentanglement, generation quality, and training time.
arXiv Detail & Related papers (2023-10-11T17:34:56Z) - TimeVAE: A Variational Auto-Encoder for Multivariate Time Series
Generation [6.824692201913679]
We propose a novel architecture for synthetically generating time-series data with the use of Variversaational Auto-Encoders (VAEs)
The proposed architecture has several distinct properties: interpretability, ability to encode domain knowledge, and reduced training times.
arXiv Detail & Related papers (2021-11-15T21:42:14Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution.
We provide a critical assessment of the currently used validation methods in the energy scenario generation literature.
We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods.
arXiv Detail & Related papers (2021-10-27T14:14:25Z) - Generating Multivariate Load States Using a Conditional Variational
Autoencoder [11.557259513691239]
A conditional variational autoencoder (CVAE) neural network is proposed in this paper.
The model includes latent variation of output samples under given latent vectors and co-optimizes the parameters for this output variability.
Experiments demonstrate that the proposed generator outperforms other data generating mechanisms.
arXiv Detail & Related papers (2021-10-21T19:07:04Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Conditional Hybrid GAN for Sequence Generation [56.67961004064029]
We propose a novel conditional hybrid GAN (C-Hybrid-GAN) to solve this issue.
We exploit the Gumbel-Softmax technique to approximate the distribution of discrete-valued sequences.
We demonstrate that the proposed C-Hybrid-GAN outperforms the existing methods in context-conditioned discrete-valued sequence generation.
arXiv Detail & Related papers (2020-09-18T03:52:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.