CleAR: Robust Context-Guided Generative Lighting Estimation for Mobile Augmented Reality
- URL: http://arxiv.org/abs/2411.02179v1
- Date: Mon, 04 Nov 2024 15:37:18 GMT
- Title: CleAR: Robust Context-Guided Generative Lighting Estimation for Mobile Augmented Reality
- Authors: Yiqin Zhao, Mallesham Dasari, Tian Guo,
- Abstract summary: We propose a generative lighting estimation system called CleAR that can produce high-quality environment maps in the format of 360$circ$ images.
Our end-to-end generative estimation takes as fast as 3.2 seconds, outperforming state-of-the-art methods by 110x.
- Score: 6.292933471495322
- License:
- Abstract: High-quality environment lighting is the foundation of creating immersive user experiences in mobile augmented reality (AR) applications. However, achieving visually coherent environment lighting estimation for Mobile AR is challenging due to several key limitations associated with AR device sensing capabilities, including limitations in device camera FoV and pixel dynamic ranges. Recent advancements in generative AI, which can generate high-quality images from different types of prompts, including texts and images, present a potential solution for high-quality lighting estimation. Still, to effectively use generative image diffusion models, we must address their key limitations of generation hallucination and slow inference process. To do so, in this work, we design and implement a generative lighting estimation system called CleAR that can produce high-quality and diverse environment maps in the format of 360$^\circ$ images. Specifically, we design a two-step generation pipeline guided by AR environment context data to ensure the results follow physical environment visual context and color appearances. To improve the estimation robustness under different lighting conditions, we design a real-time refinement component to adjust lighting estimation results on AR devices. To train and test our generative models, we curate a large-scale environment lighting estimation dataset with diverse lighting conditions. Through quantitative evaluation and user study, we show that CleAR outperforms state-of-the-art lighting estimation methods on both estimation accuracy and robustness. Moreover, CleAR supports real-time refinement of lighting estimation results, ensuring robust and timely environment lighting updates for AR applications. Our end-to-end generative estimation takes as fast as 3.2 seconds, outperforming state-of-the-art methods by 110x.
Related papers
- Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
We propose a physically-motivated deep learning framework to solve the indoor lighting estimation problem.
Given a single LDR image with a depth map, our method predicts spatially consistent lighting at any given image position.
Our framework achieves photorealistic lighting prediction with higher quality compared to state-of-the-art single-image or video-based methods.
arXiv Detail & Related papers (2023-05-07T20:36:29Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - LitAR: Visually Coherent Lighting for Mobile Augmented Reality [24.466149552743516]
We present the design and implementation of a lighting reconstruction framework called LitAR.
LitAR addresses several challenges of supporting lighting information for mobile AR.
arXiv Detail & Related papers (2023-01-15T20:47:38Z) - Neural Light Field Estimation for Street Scenes with Differentiable
Virtual Object Insertion [129.52943959497665]
Existing works on outdoor lighting estimation typically simplify the scene lighting into an environment map.
We propose a neural approach that estimates the 5D HDR light field from a single image.
We show the benefits of our AR object insertion in an autonomous driving application.
arXiv Detail & Related papers (2022-08-19T17:59:16Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Spatially and color consistent environment lighting estimation using
deep neural networks for mixed reality [1.1470070927586016]
This paper presents a CNN-based model to estimate complex lighting for mixed reality environments.
We propose a new CNN architecture that inputs an RGB image and recognizes, in real-time, the environment lighting.
We show in experiments that the CNN architecture can predict the environment lighting with an average mean squared error (MSE) of num7.85e-04 when comparing SH lighting coefficients.
arXiv Detail & Related papers (2021-08-17T23:03:55Z) - Sparse Needlets for Lighting Estimation with Spherical Transport Loss [89.52531416604774]
NeedleLight is a new lighting estimation model that represents illumination with needlets and allows lighting estimation in both frequency domain and spatial domain jointly.
Extensive experiments show that NeedleLight achieves superior lighting estimation consistently across multiple evaluation metrics as compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-24T15:19:42Z) - Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile
Augmented Reality [9.129335351176904]
We design an edge-assisted framework called Xihe to provide mobile AR applications the ability to obtain accurate omnidirectional lighting estimation in real time.
We develop a tailored GPU pipeline for on-device point cloud processing and use an encoding technique that reduces network transmitted bytes.
Our results show that Xihe takes as fast as 20.67ms per lighting estimation and achieves 9.4% better estimation accuracy than a state-of-the-art neural network.
arXiv Detail & Related papers (2021-05-30T13:48:29Z) - Object-based Illumination Estimation with Rendering-aware Neural
Networks [56.01734918693844]
We present a scheme for fast environment light estimation from the RGBD appearance of individual objects and their local image areas.
With the estimated lighting, virtual objects can be rendered in AR scenarios with shading that is consistent to the real scene.
arXiv Detail & Related papers (2020-08-06T08:23:19Z) - PointAR: Efficient Lighting Estimation for Mobile Augmented Reality [7.58114840374767]
We propose an efficient lighting estimation pipeline that is suitable to run on modern mobile devices.
PointAR takes a single RGB-D image captured from the mobile camera and a 2D location in that image, and estimates 2nd order spherical harmonics coefficients.
arXiv Detail & Related papers (2020-03-30T19:13:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.