DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation
- URL: http://arxiv.org/abs/2411.02189v1
- Date: Mon, 04 Nov 2024 15:43:57 GMT
- Title: DiffSim2Real: Deploying Quadrupedal Locomotion Policies Purely Trained in Differentiable Simulation
- Authors: Joshua Bagajo, Clemens Schwarke, Victor Klemm, Ignat Georgiev, Jean-Pierre Sleiman, Jesus Tordesillas, Animesh Garg, Marco Hutter,
- Abstract summary: We show that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world.
A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy.
This is the first time a real quadpedal robot is able to locomote after training exclusively in a differentiable simulation.
- Score: 35.76143996968696
- License:
- Abstract: Differentiable simulators provide analytic gradients, enabling more sample-efficient learning algorithms and paving the way for data intensive learning tasks such as learning from images. In this work, we demonstrate that locomotion policies trained with analytic gradients from a differentiable simulator can be successfully transferred to the real world. Typically, simulators that offer informative gradients lack the physical accuracy needed for sim-to-real transfer, and vice-versa. A key factor in our success is a smooth contact model that combines informative gradients with physical accuracy, ensuring effective transfer of learned behaviors. To the best of our knowledge, this is the first time a real quadrupedal robot is able to locomote after training exclusively in a differentiable simulation.
Related papers
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
Differentiable simulation promises fast convergence and stable training.
This work proposes a new differentiable simulation framework to overcome these challenges.
Our framework enables learning quadruped walking in simulation in minutes without parallelization.
arXiv Detail & Related papers (2024-03-21T22:18:59Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Improving Gradient Computation for Differentiable Physics Simulation
with Contacts [10.450509067356148]
We study differentiable rigid-body simulation with contacts.
We propose to improve gradient computation by continuous collision detection and leverage the time-of-impact (TOI)
We show that with TOI-Ve, we are able to learn an optimal control sequence that matches the analytical solution.
arXiv Detail & Related papers (2023-04-28T21:10:16Z) - Perception Imitation: Towards Synthesis-free Simulator for Autonomous
Vehicles [45.27200446670184]
We propose a perception imitation method to simulate results of a certain perception model, and discuss a new route of autonomous driving simulator without data synthesis.
Experiments show that our method is effective to model the behavior of learning-based perception model, and can be further applied in the proposed simulation route smoothly.
arXiv Detail & Related papers (2023-04-19T01:27:02Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.