Conformal-in-the-Loop for Learning with Imbalanced Noisy Data
- URL: http://arxiv.org/abs/2411.02281v1
- Date: Mon, 04 Nov 2024 17:09:58 GMT
- Title: Conformal-in-the-Loop for Learning with Imbalanced Noisy Data
- Authors: John Brandon Graham-Knight, Jamil Fayyad, Nourhan Bayasi, Patricia Lasserre, Homayoun Najjaran,
- Abstract summary: Class imbalance and label noise are pervasive in large-scale datasets.
Much of machine learning research assumes well-labeled, balanced data, which rarely reflects real world conditions.
We propose Conformal-in-the-Loop (CitL), a novel training framework that addresses both challenges with a conformal prediction-based approach.
- Score: 5.69777817429044
- License:
- Abstract: Class imbalance and label noise are pervasive in large-scale datasets, yet much of machine learning research assumes well-labeled, balanced data, which rarely reflects real world conditions. Existing approaches typically address either label noise or class imbalance in isolation, leading to suboptimal results when both issues coexist. In this work, we propose Conformal-in-the-Loop (CitL), a novel training framework that addresses both challenges with a conformal prediction-based approach. CitL evaluates sample uncertainty to adjust weights and prune unreliable examples, enhancing model resilience and accuracy with minimal computational cost. Our extensive experiments include a detailed analysis showing how CitL effectively emphasizes impactful data in noisy, imbalanced datasets. Our results show that CitL consistently boosts model performance, achieving up to a 6.1% increase in classification accuracy and a 5.0 mIoU improvement in segmentation. Our code is publicly available: CitL.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Dynamic Loss For Robust Learning [17.33444812274523]
This work presents a novel meta-learning based dynamic loss that automatically adjusts the objective functions with the training process to robustly learn a classifier from long-tailed noisy data.
Our method achieves state-of-the-art accuracy on multiple real-world and synthetic datasets with various types of data biases, including CIFAR-10/100, Animal-10N, ImageNet-LT, and Webvision.
arXiv Detail & Related papers (2022-11-22T01:48:25Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
Semi-supervised learning (SSL) has shown great promise in leveraging unlabeled data to improve model performance.
We consider a more realistic and challenging setting called imbalanced SSL, where imbalanced class distributions occur in both labeled and unlabeled data.
We study a simple yet overlooked baseline -- SimiS -- which tackles data imbalance by simply supplementing labeled data with pseudo-labels.
arXiv Detail & Related papers (2022-11-20T21:18:41Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Learning From Long-Tailed Data With Noisy Labels [0.0]
Class imbalance and noisy labels are the norm in many large-scale classification datasets.
We present a simple two-stage approach based on recent advances in self-supervised learning.
We find that self-supervised learning approaches are effectively able to cope with severe class imbalance.
arXiv Detail & Related papers (2021-08-25T07:45:40Z) - How Sensitive are Meta-Learners to Dataset Imbalance? [13.60699610822265]
We show that ML methods are more robust against meta-dataset imbalance than imbalance at the task-level.
Overall, these results highlight an implicit strength of ML algorithms, capable of learning generalizable features under dataset imbalance and domain-shift.
arXiv Detail & Related papers (2021-04-12T10:47:42Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.