Long-Tailed Recognition Using Class-Balanced Experts
- URL: http://arxiv.org/abs/2004.03706v2
- Date: Mon, 19 Oct 2020 11:22:02 GMT
- Title: Long-Tailed Recognition Using Class-Balanced Experts
- Authors: Saurabh Sharma, Ning Yu, Mario Fritz, Bernt Schiele
- Abstract summary: We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
- Score: 128.73438243408393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning enables impressive performance in image recognition using
large-scale artificially-balanced datasets. However, real-world datasets
exhibit highly class-imbalanced distributions, yielding two main challenges:
relative imbalance amongst the classes and data scarcity for mediumshot or
fewshot classes. In this work, we address the problem of long-tailed
recognition wherein the training set is highly imbalanced and the test set is
kept balanced. Differently from existing paradigms relying on data-resampling,
cost-sensitive learning, online hard example mining, loss objective reshaping,
and/or memory-based modeling, we propose an ensemble of class-balanced experts
that combines the strength of diverse classifiers. Our ensemble of
class-balanced experts reaches results close to state-of-the-art and an
extended ensemble establishes a new state-of-the-art on two benchmarks for
long-tailed recognition. We conduct extensive experiments to analyse the
performance of the ensembles, and discover that in modern large-scale datasets,
relative imbalance is a harder problem than data scarcity. The training and
evaluation code is available at
https://github.com/ssfootball04/class-balanced-experts.
Related papers
- Gradient Reweighting: Towards Imbalanced Class-Incremental Learning [8.438092346233054]
Class-Incremental Learning (CIL) trains a model to continually recognize new classes from non-stationary data.
A major challenge of CIL arises when applying to real-world data characterized by non-uniform distribution.
We show that this dual imbalance issue causes skewed gradient updates with biased weights in FC layers, thus inducing over/under-fitting and catastrophic forgetting in CIL.
arXiv Detail & Related papers (2024-02-28T18:08:03Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
Real-world datasets are often highly class-imbalanced, which can adversely impact the performance of deep learning models.
The majority of research on training neural networks under class imbalance has focused on specialized loss functions, sampling techniques, or two-stage training procedures.
We demonstrate that simply tuning existing components of standard deep learning pipelines, such as the batch size, data augmentation, and label smoothing, can achieve state-of-the-art performance without any such specialized class imbalance methods.
arXiv Detail & Related papers (2023-12-05T05:52:44Z) - A Survey on Class Imbalance in Federated Learning [6.632451878730774]
Federated learning allows multiple client devices in a network to jointly train a machine learning model without direct exposure of clients' data.
It has been found that models trained with federated learning usually have worse performance than their counterparts trained in the standard centralized learning mode.
arXiv Detail & Related papers (2023-03-21T08:34:23Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
The imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks.
Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design.
We propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes.
Our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning.
arXiv Detail & Related papers (2022-08-04T10:22:24Z) - Deep Reinforcement Learning for Multi-class Imbalanced Training [64.9100301614621]
We introduce an imbalanced classification framework, based on reinforcement learning, for training extremely imbalanced data sets.
We formulate a custom reward function and episode-training procedure, specifically with the added capability of handling multi-class imbalanced training.
Using real-world clinical case studies, we demonstrate that our proposed framework outperforms current state-of-the-art imbalanced learning methods.
arXiv Detail & Related papers (2022-05-24T13:39:59Z) - ASE: Anomaly Scoring Based Ensemble Learning for Imbalanced Datasets [3.214208422566496]
We come up with a bagging ensemble learning framework based on an anomaly detection scoring system.
We test out that our ensemble learning model can dramatically improve performance of base estimators.
arXiv Detail & Related papers (2022-03-21T07:20:41Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
Main challenges in long-tailed recognition come from the imbalanced data distribution and sample scarcity in its tail classes.
We propose a new recognition setting, namely semi-supervised long-tailed recognition.
We demonstrate significant accuracy improvements over other competitive methods on two datasets.
arXiv Detail & Related papers (2021-05-01T00:43:38Z) - The Devil is the Classifier: Investigating Long Tail Relation
Classification with Decoupling Analysis [36.298869931803836]
Long-tailed relation classification is a challenging problem as the head classes may dominate the training phase.
We propose a robust classifier with attentive relation routing, which assigns soft weights by automatically aggregating the relations.
arXiv Detail & Related papers (2020-09-15T12:47:00Z) - Mitigating Dataset Imbalance via Joint Generation and Classification [17.57577266707809]
Supervised deep learning methods are enjoying enormous success in many practical applications of computer vision.
The marked performance degradation to biases and imbalanced data questions the reliability of these methods.
We introduce a joint dataset repairment strategy by combining a neural network classifier with Generative Adversarial Networks (GAN)
We show that the combined training helps to improve the robustness of both the classifier and the GAN against severe class imbalance.
arXiv Detail & Related papers (2020-08-12T18:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.