Can Personalized Medicine Coexist with Health Equity? Examining the Cost Barrier and Ethical Implications
- URL: http://arxiv.org/abs/2411.02307v1
- Date: Mon, 04 Nov 2024 17:31:10 GMT
- Title: Can Personalized Medicine Coexist with Health Equity? Examining the Cost Barrier and Ethical Implications
- Authors: Kishi Kobe Yee Francisco, Andrane Estelle Carnicer Apuhin, Myles Joshua Toledo Tan, Mickael Cavanaugh Byers, Nicholle Mae Amor Tan Maravilla, Hezerul Abdul Karim, Nouar AlDahoul,
- Abstract summary: Personalized medicine promises to transform healthcare by providing treatments tailored to individual genetic, environmental, and lifestyle factors.
High costs and infrastructure demands raise concerns about exacerbating health disparities, especially between high-income countries (HICs) and low- and middle-income countries (LMICs)
This paper explores the financial and ethical challenges of PM implementation, with a focus on ensuring equitable access.
- Score: 0.0
- License:
- Abstract: Personalized medicine (PM) promises to transform healthcare by providing treatments tailored to individual genetic, environmental, and lifestyle factors. However, its high costs and infrastructure demands raise concerns about exacerbating health disparities, especially between high-income countries (HICs) and low- and middle-income countries (LMICs). While HICs benefit from advanced PM applications through AI and genomics, LMICs often lack the resources necessary to adopt these innovations, leading to a widening healthcare divide. This paper explores the financial and ethical challenges of PM implementation, with a focus on ensuring equitable access. It proposes strategies for global collaboration, infrastructure development, and ethical frameworks to support LMICs in adopting PM, aiming to prevent further disparities in healthcare accessibility and outcomes.
Related papers
- AI-driven innovation in medicaid: enhancing access, cost efficiency, and population health management [1.4802369202548666]
The U.S. Medicaid program is experiencing critical challenges that include rapidly increasing healthcare costs, uneven care accessibility, and the challenge associated with addressing a varied set of population health needs.
This paper investigates the transformative potential of Artificial Intelligence (AI) in reshaping Medicaid by streamlining operations, improving patient results, and lowering costs.
arXiv Detail & Related papers (2024-10-11T07:14:42Z) - Data-Driven Approach to assess and identify gaps in healthcare set up in South Asia [1.9058065795191268]
South Asian countries are working to improve their primary healthcare system.
Data-driven surveillance approaches are required.
We propose to harness current breakthroughs in Earth-observation technology.
arXiv Detail & Related papers (2024-09-21T16:50:16Z) - An AI-Enabled Framework Within Reach for Enhancing Healthcare Sustainability and Fairness [34.45323376456333]
We propose a camera-based public health (CBPH) framework utilizing visual physiological monitoring technology.
CBPH can be considered as a convenient and universal framework for public health, advancing the United Nations Sustainable Development Goals.
CBPH provides a comprehensive solution for building a large-scale and human-centric medical database.
arXiv Detail & Related papers (2024-04-21T04:37:24Z) - Deep Reinforcement Learning for Efficient and Fair Allocation of Health Care Resources [47.57108369791273]
Scarcity of health care resources could result in the unavoidable consequence of rationing.
There is no universally accepted standard for health care resource allocation protocols.
We propose a transformer-based deep Q-network to integrate the disease progression of individual patients and the interaction effects among patients.
arXiv Detail & Related papers (2023-09-15T17:28:06Z) - Pursuing Equilibrium of Medical Resources via Data Empowerment in
Parallel Healthcare System [25.966217799846323]
parallel healthcare system comprises Medicine-Oriented Operating Systems (MOOS), Medicine-Oriented Scenario Engineering (MOSE), and Medicine-Oriented Large Models (MOLMs)
The supply-demand relationship can be balanced in parallel healthcare systems by (1) increasing the supply provided by digital and robotic doctors in MOOS, (2) identifying individual and potential demands by proactive diagnosis and treatment in MOSE, and (3) improving supply-demand matching using large models in MOLMs.
arXiv Detail & Related papers (2023-06-01T07:17:02Z) - What We Know So Far: Artificial Intelligence in African Healthcare [0.0]
Artificial intelligence (AI) applied to healthcare has the potential to transform healthcare in Africa.
This paper reviews the current state of how AI Algorithms can be used to improve diagnostics, treatment, and disease monitoring.
There is a need for a well-coordinated effort by the governments, private sector, healthcare providers, and international organizations to create sustainable AI solutions.
arXiv Detail & Related papers (2023-05-10T19:27:40Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
The Italian National Health Service is adopting Artificial Intelligence through its technical agencies.
Such a vast programme requires special care in formalising the knowledge domain.
Questions have been raised about the impact that AI could have on patients, practitioners, and health systems.
arXiv Detail & Related papers (2023-04-24T08:00:02Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.