Discrete the solving model of time-variant standard Sylvester-conjugate matrix equations using Euler-forward formula
- URL: http://arxiv.org/abs/2411.02333v1
- Date: Mon, 04 Nov 2024 17:58:31 GMT
- Title: Discrete the solving model of time-variant standard Sylvester-conjugate matrix equations using Euler-forward formula
- Authors: Jiakuang He, Dongqing Wu,
- Abstract summary: Time-variant Sylvester-conjugate matrix equations are presented as early time-variant versions of the complex conjugate matrix equations.
Current solving methods include Con-CZND1 and Con-CZND2 models, both of which use ode45 for continuous model.
Based on Euler-forward formula discretion, Con-DZND1-2i model and Con-DZND2-2i model are proposed.
- Score: 1.1970409518725493
- License:
- Abstract: Time-variant standard Sylvester-conjugate matrix equations are presented as early time-variant versions of the complex conjugate matrix equations. Current solving methods include Con-CZND1 and Con-CZND2 models, both of which use ode45 for continuous model. Given practical computational considerations, discrete these models is also important. Based on Euler-forward formula discretion, Con-DZND1-2i model and Con-DZND2-2i model are proposed. Numerical experiments using step sizes of 0.1 and 0.001. The above experiments show that Con-DZND1-2i model and Con-DZND2-2i model exhibit different neural dynamics compared to their continuous counterparts, such as trajectory correction in Con-DZND2-2i model and the swallowing phenomenon in Con-DZND1-2i model, with convergence affected by step size. These experiments highlight the differences between optimizing sampling discretion errors and space compressive approximation errors in neural dynamics.
Related papers
- Zeroing neural dynamics solving time-variant complex conjugate matrix equation [1.1970409518725493]
Complex conjugate matrix equations (CCME) have aroused the interest of many researchers because of computations and antilinear systems.
Existing research is dominated by its time-invariant solving methods, but lacks proposed theories for solving its time-variant version.
In this paper, zeroing neural dynamics (ZND) is applied to solve its time-variant version.
arXiv Detail & Related papers (2024-06-18T16:50:26Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Diffeomorphic Measure Matching with Kernels for Generative Modeling [1.2058600649065618]
This article presents a framework for transport of probability measures towards minimum divergence generative modeling and sampling using ordinary differential equations (ODEs) and Reproducing Kernel Hilbert Spaces (RKHSs)
A theoretical analysis of the proposed method is presented, giving a priori error bounds in terms of the complexity of the model, the number of samples in the training set, and model misspecification.
arXiv Detail & Related papers (2024-02-12T21:44:20Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2023-07-24T08:46:12Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
We show a new class of solvers for ordinary differential equations (ODEs) that phrase the solution process directly in terms of Bayesian filtering.
It then becomes possible to perform approximate Bayesian inference on the latent force as well as the ODE solution in a single, linear complexity pass of an extended Kalman filter.
We demonstrate the expressiveness and performance of the algorithm by training a non-parametric SIRD model on data from the COVID-19 outbreak.
arXiv Detail & Related papers (2021-03-18T10:36:09Z) - Neural Controlled Differential Equations for Irregular Time Series [17.338923885534197]
An ordinary differential equation is determined by its initial condition, and there is no mechanism for adjusting the trajectory based on subsequent observations.
Here we demonstrate how this may be resolved through the well-understood mathematics of emphcontrolled differential equations
We show that our model achieves state-of-the-art performance against similar (ODE or RNN based) models in empirical studies on a range of datasets.
arXiv Detail & Related papers (2020-05-18T17:52:21Z) - Estimation of sparse Gaussian graphical models with hidden clustering
structure [8.258451067861932]
We propose a model to estimate the sparse Gaussian graphical models with hidden clustering structure.
We develop a symmetric Gauss-Seidel based alternating direction method of the multipliers.
Numerical experiments on both synthetic data and real data demonstrate the good performance of our model.
arXiv Detail & Related papers (2020-04-17T08:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.