論文の概要: A Multi-Task Role-Playing Agent Capable of Imitating Character Linguistic Styles
- arxiv url: http://arxiv.org/abs/2411.02457v1
- Date: Mon, 04 Nov 2024 02:26:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:41.192343
- Title: A Multi-Task Role-Playing Agent Capable of Imitating Character Linguistic Styles
- Title(参考訳): 文字言語スタイルの省略が可能なマルチタスクロールプレイングエージェント
- Authors: Siyuan Chen, Qingyi Si, Chenxu Yang, Yunzhi Liang, Zheng Lin, Huan Liu, Weiping Wang,
- Abstract要約: 現在のロールプレイングエージェント(RPAs)は、主に言語のスタイルの複製を無視しながら、キャラクターの基本属性を模倣することに焦点を当てている。
ダイアログ,辞書,コンポジション,ストーリ生成,製品記述,音楽解説,オープン質問回答を含む7つのタスクにおいて,近年のオープンソースLLMとRPAのベースラインを著しく上回るマルチタスクロールプレイングエージェント(MRPA)であるStyleRPAを開発した。
- 参考スコア(独自算出の注目度): 28.237927070779925
- License:
- Abstract: The advent of large language models (LLMs) has significantly propelled the advancement of Role-Playing Agents (RPAs). However, current Role-Playing Agents predominantly focus on mimicking a character's fundamental attributes while neglecting the replication of linguistic style, and they are incapable of effectively replicating characters when performing tasks beyond multi-turn dialogues, which results in generated responses that lack authenticity. The reason current RPAs lack this capability is due to the nature of existing character datasets, which lack collections of character quotations and are limited to multi-turn dialogue tasks, constraining the RPA's performance across other task domains and failing to mimic a character's linguistic style. To address this gap, we developed a multi-task role-playing dataset named MRstyle, which encompasses a substantial number of real individuals along with their quotations and covers seven different tasks. On this basis, we develop StyleRPA, a Multi-Task Role-Playing Agent (MRPA) that significantly outperforms recent open-source LLMs and RPAs baselines on 7 tasks including Dialogue, Dictionary, Composition, Story Generation, Product Description, Music Commentary, and Open Question Answering. The code and data will be released.
- Abstract(参考訳): 大きな言語モデル(LLM)の出現は、ロールプレイングエージェント(RPAs)の進歩を著しく加速させた。
しかし、現在のロールプレイングエージェントは、言語スタイルの複製を無視しながらキャラクターの基本属性を模倣することに集中しており、マルチターン対話を超えてタスクを実行する際に文字を効果的に複製することができないため、信頼性に欠ける応答が生成される。
現在のRPAがこの機能を欠いている理由は、キャラクタの引用のコレクションがなく、マルチターンの対話タスクに制限されている既存のキャラクタデータセットの性質が、他のタスクドメイン間でのRPAのパフォーマンスを制限し、キャラクタの言語スタイルを模倣しなかったためである。
このギャップに対処するため,MRstyleというマルチタスクロールプレイングデータセットを開発した。
そこで我々は,近年のオープンソースLLMとRPAのベースラインを,ダイアログ,辞書,コンポジション,ストーリ生成,製品記述,音楽解説,オープン質問回答など7つのタスクで大きく上回るマルチタスクロールプレイングエージェントであるStyleRPAを開発した。
コードとデータはリリースされます。
関連論文リスト
- Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
我々は,多話者環境における音声の書き起こしにおける大規模言語モデル(LLM)の能力について,先駆的な研究を行う。
提案手法では,WavLMとWhisperエンコーダを用いて,話者の特徴や意味的文脈に敏感な多面的音声表現を抽出する。
包括的実験により,カクテルパーティーのシナリオにおいて提案システムであるMT-LLMが期待できる性能を示した。
論文 参考訳(メタデータ) (2024-09-13T07:28:28Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
本稿では、パーソナリティを指標としたデータを用いて、ロールプレイング言語モデル(RPLM)を強化することを提案する。
具体的には、心理学的尺度からの質問を活用し、高度なRPAを蒸留し、文字の心を把握した対話を生成する。
実験により,本データセットを用いてトレーニングしたRPLMは,一般人格関連評価と人格関連評価の両面において,高度なロールプレイング能力を示した。
論文 参考訳(メタデータ) (2024-06-27T06:24:00Z) - Evaluating Character Understanding of Large Language Models via Character Profiling from Fictional Works [33.817319226631426]
大規模言語モデル(LLM)は印象的なパフォーマンスを示し、多くのAIアプリケーションに拍車をかけた。
これらのRPAの前提条件は、LLMが架空の作品からキャラクターを理解する能力にある。
これまでの努力は、基本的な分類タスクや特徴的模倣を通じて、この機能を評価してきた。
論文 参考訳(メタデータ) (2024-04-19T09:10:29Z) - Large Language Models are Superpositions of All Characters: Attaining
Arbitrary Role-play via Self-Alignment [62.898963074989766]
本稿では,ロールプレイのための自己アライメント手法であるDittoを紹介する。
この方法は4000文字からなるロールプレイトレーニングセットを生成し、現在利用可能なデータセットのスケールを10倍に超える。
本稿では,ロールプレイ領域におけるクロススーパービジョンアライメント実験について紹介する。
論文 参考訳(メタデータ) (2024-01-23T03:56:22Z) - RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models [6.753588449962107]
RoleCraft-GLMは、大規模言語モデル(LLM)によるパーソナライズされたロールプレイングの強化を目的とした革新的なフレームワークである。
従来の有名人中心のキャラクターから多彩な非有名人ペルソナへとシフトする、ユニークな会話データセットをコントリビュートする。
私たちのアプローチには、細心の注意深いキャラクタ開発、対話が現実的かつ感情的に共鳴することを保証することが含まれる。
論文 参考訳(メタデータ) (2023-12-17T17:57:50Z) - Large Language Models Meet Harry Potter: A Bilingual Dataset for
Aligning Dialogue Agents with Characters [70.84938803753062]
本稿では,対話エージェントと文字アライメントの研究を進めるために設計されたHarry Potter Dialogueデータセットを紹介する。
このデータセットはハリー・ポッターシリーズのすべての対話セッション(英語と中国語の両方)を含んでいる。
対話シーン、話者、人物関係、属性など、重要な背景情報とともに注釈付けされている。
論文 参考訳(メタデータ) (2022-11-13T10:16:39Z) - Inner Monologue: Embodied Reasoning through Planning with Language
Models [81.07216635735571]
大規模言語モデル(LLM)は自然言語処理以外の領域に適用できる。
具体化された環境でのLLMの計画には、何をすべきかだけでなく、どのように、いつ行うべきかを考える必要がある。
環境フィードバックを活用することで、LLMはロボット制御シナリオにおいてよりリッチな処理と計画を行うことができる内部モノローグを形成することができる。
論文 参考訳(メタデータ) (2022-07-12T15:20:48Z) - A Mixture-of-Expert Approach to RL-based Dialogue Management [56.08449336469477]
我々は、強化学習を用いて、近視性(一般的な発話の出力)を回避し、全体的なユーザ満足度を最大化する対話エージェントを開発する。
既存のRLアプローチのほとんどは、単語レベルでエージェントを訓練するので、中規模の語彙であっても、非常に複雑なアクション空間を扱う必要がある。
i)会話履歴の多様な意味を学習できるLMと、(ii)対応する発話を生成できる専門的なLM(または専門家)からなる、新しい専門家言語モデル(MoE-LM)を用いたRLベースのDMを開発する。
論文 参考訳(メタデータ) (2022-05-31T19:00:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。