Energy-Aware Dynamic Neural Inference
- URL: http://arxiv.org/abs/2411.02471v2
- Date: Wed, 06 Nov 2024 21:10:43 GMT
- Title: Energy-Aware Dynamic Neural Inference
- Authors: Marcello Bullo, Seifallah Jardak, Pietro Carnelli, Deniz Gündüz,
- Abstract summary: We introduce an on-device adaptive inference system equipped with an energy-harvester and finite-capacity energy storage.
We show that, as the rate of the ambient energy increases, energy- and confidence-aware control schemes show approximately 5% improvement in accuracy.
We derive a principled policy with theoretical guarantees for confidence-aware and -agnostic controllers.
- Score: 39.04688735618206
- License:
- Abstract: The growing demand for intelligent applications beyond the network edge, coupled with the need for sustainable operation, are driving the seamless integration of deep learning (DL) algorithms into energy-limited, and even energy-harvesting end-devices. However, the stochastic nature of ambient energy sources often results in insufficient harvesting rates, failing to meet the energy requirements for inference and causing significant performance degradation in energy-agnostic systems. To address this problem, we consider an on-device adaptive inference system equipped with an energy-harvester and finite-capacity energy storage. We then allow the device to reduce the run-time execution cost on-demand, by either switching between differently-sized neural networks, referred to as multi-model selection (MMS), or by enabling earlier predictions at intermediate layers, called early exiting (EE). The model to be employed, or the exit point is then dynamically chosen based on the energy storage and harvesting process states. We also study the efficacy of integrating the prediction confidence into the decision-making process. We derive a principled policy with theoretical guarantees for confidence-aware and -agnostic controllers. Moreover, in multi-exit networks, we study the advantages of taking decisions incrementally, exit-by-exit, by designing a lightweight reinforcement learning-based controller. Experimental results show that, as the rate of the ambient energy increases, energy- and confidence-aware control schemes show approximately 5% improvement in accuracy compared to their energy-aware confidence-agnostic counterparts. Incremental approaches achieve even higher accuracy, particularly when the energy storage capacity is limited relative to the energy consumption of the inference model.
Related papers
- Revisiting DNN Training for Intermittently Powered Energy Harvesting Micro Computers [0.6721767679705013]
This study introduces and evaluates a novel training methodology tailored for Deep Neural Networks in energy-constrained environments.
We propose a dynamic dropout technique that adapts to both the architecture of the device and the variability in energy availability.
Preliminary results demonstrate that this strategy provides 6 to 22 percent accuracy improvements compared to the state of the art with less than 5 percent additional compute.
arXiv Detail & Related papers (2024-08-25T01:13:00Z) - Federated Learning With Energy Harvesting Devices: An MDP Framework [5.852486435612777]
Federated learning (FL) requires edge devices to perform local training and exchange information with a parameter server.
A critical challenge in practical FL systems is the rapid energy depletion of battery-limited edge devices.
We apply energy harvesting technique in FL systems to extract ambient energy for continuously powering edge devices.
arXiv Detail & Related papers (2024-05-17T03:41:40Z) - PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices [10.01838504586422]
The continuous operation of ML-powered systems leads to significant energy use during inference.
This paper investigates how the configuration of on-device hardware-elements such as GPU, memory, and CPU frequency, affects energy consumption for NN inference with regular fine-tuning.
We propose PolyThrottle, a solution that optimize configurations across individual hardware components using Constrained Bayesian Optimization in an energy-conserving manner.
arXiv Detail & Related papers (2023-10-30T20:19:41Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
As the network scale increases, the energy efficiency of LoRa networks decreases sharply due to severe packet collisions.
We propose a transmission parameter allocation algorithm based on multiagent reinforcement learning (MALoRa)
Simulation results demonstrate that MALoRa significantly improves the system EE compared with baseline algorithms.
arXiv Detail & Related papers (2023-09-16T11:37:23Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
We propose energy-adaptive dynamic early exiting to enable efficient and accurate inference in an EH edge intelligence system.
Our approach derives an energy-aware EE policy that determines the optimal amount of computational processing on a per-sample basis.
Results show that accuracy and service rate are improved up to 25% and 35%, respectively, in comparison with an energy-agnostic policy.
arXiv Detail & Related papers (2023-05-23T14:17:44Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.