Sustainable Edge Intelligence Through Energy-Aware Early Exiting
- URL: http://arxiv.org/abs/2305.14094v2
- Date: Sun, 16 Jul 2023 23:18:16 GMT
- Title: Sustainable Edge Intelligence Through Energy-Aware Early Exiting
- Authors: Marcello Bullo, Seifallah Jardak, Pietro Carnelli, Deniz G\"und\"uz
- Abstract summary: We propose energy-adaptive dynamic early exiting to enable efficient and accurate inference in an EH edge intelligence system.
Our approach derives an energy-aware EE policy that determines the optimal amount of computational processing on a per-sample basis.
Results show that accuracy and service rate are improved up to 25% and 35%, respectively, in comparison with an energy-agnostic policy.
- Score: 0.726437825413781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL) models have emerged as a promising solution for the
Internet of Things (IoT). However, due to their computational complexity, DL
models consume significant amounts of energy, which can rapidly drain the
battery and compromise the performance of IoT devices. For sustainable
operation, we consider an edge device with a rechargeable battery and energy
harvesting (EH) capabilities. In addition to the stochastic nature of the
ambient energy source, the harvesting rate is often insufficient to meet the
inference energy requirements, leading to drastic performance degradation in
energy-agnostic devices. To mitigate this problem, we propose energy-adaptive
dynamic early exiting (EE) to enable efficient and accurate inference in an EH
edge intelligence system. Our approach derives an energy-aware EE policy that
determines the optimal amount of computational processing on a per-sample
basis. The proposed policy balances the energy consumption to match the limited
incoming energy and achieves continuous availability. Numerical results show
that accuracy and service rate are improved up to 25% and 35%, respectively, in
comparison with an energy-agnostic policy.
Related papers
- Energy-Aware Dynamic Neural Inference [39.04688735618206]
We introduce an on-device adaptive inference system equipped with an energy-harvester and finite-capacity energy storage.
We show that, as the rate of the ambient energy increases, energy- and confidence-aware control schemes show approximately 5% improvement in accuracy.
We derive a principled policy with theoretical guarantees for confidence-aware and -agnostic controllers.
arXiv Detail & Related papers (2024-11-04T16:51:22Z) - PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices [10.01838504586422]
The continuous operation of ML-powered systems leads to significant energy use during inference.
This paper investigates how the configuration of on-device hardware-elements such as GPU, memory, and CPU frequency, affects energy consumption for NN inference with regular fine-tuning.
We propose PolyThrottle, a solution that optimize configurations across individual hardware components using Constrained Bayesian Optimization in an energy-conserving manner.
arXiv Detail & Related papers (2023-10-30T20:19:41Z) - Energy Loss Prediction in IoT Energy Services [0.43012765978447565]
We propose a novel Energy Loss Prediction framework that estimates the energy loss in sharing crowdsourced energy services.
We propose Easeformer, a novel attention-based algorithm to predict the battery levels of IoT devices.
A set of experiments were conducted to demonstrate the feasibility and effectiveness of the proposed framework.
arXiv Detail & Related papers (2023-05-16T09:07:08Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Adaptive Energy Management for Self-Sustainable Wearables in Mobile
Health [21.97214707198675]
Small form factor of wearable devices limits the battery size and operating lifetime.
Energy harvesting has emerged as an effective method towards sustainable operation of wearable devices.
This paper studies the novel problem of adaptive energy management towards the goal of self-sustainable wearables by using harvested energy to supplement the battery energy and to reduce manual recharging by users.
arXiv Detail & Related papers (2022-01-16T23:49:20Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - ECO: Enabling Energy-Neutral IoT Devices through Runtime Allocation of
Harvested Energy [0.8774604259603302]
We present a runtime-based energy-allocation framework to optimize the utility of the target device under energy constraints.
The proposed framework uses an efficient iterative algorithm to compute initial energy allocations at the beginning of a day.
We evaluate this framework using solar and motion energy harvesting modalities and American Time Use Survey data from 4772 different users.
arXiv Detail & Related papers (2021-02-26T17:21:25Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.