SPACE: 3D Spatial Co-operation and Exploration Framework for Robust Mapping and Coverage with Multi-Robot Systems
- URL: http://arxiv.org/abs/2411.02524v1
- Date: Mon, 04 Nov 2024 19:04:09 GMT
- Title: SPACE: 3D Spatial Co-operation and Exploration Framework for Robust Mapping and Coverage with Multi-Robot Systems
- Authors: Sai Krishna Ghanta, Ramviyas Parasuraman,
- Abstract summary: Multi-robot visual (RGB-D) mapping and exploration holds immense potential for application in domains such as domestic service and logistics.
There are two primary challenges: (1) the "ghosting trail" effect, which occurs due to overlapping views of robots, and (2) the oversight of visual reconstructions in selecting the most effective frontiers for exploration.
We propose a new semi-distributed framework (SPACE) for spatial cooperation in indoor environments that enables enhanced coverage and 3D mapping.
- Score: 0.0
- License:
- Abstract: In indoor environments, multi-robot visual (RGB-D) mapping and exploration hold immense potential for application in domains such as domestic service and logistics, where deploying multiple robots in the same environment can significantly enhance efficiency. However, there are two primary challenges: (1) the "ghosting trail" effect, which occurs due to overlapping views of robots impacting the accuracy and quality of point cloud reconstruction, and (2) the oversight of visual reconstructions in selecting the most effective frontiers for exploration. Given these challenges are interrelated, we address them together by proposing a new semi-distributed framework (SPACE) for spatial cooperation in indoor environments that enables enhanced coverage and 3D mapping. SPACE leverages geometric techniques, including "mutual awareness" and a "dynamic robot filter," to overcome spatial mapping constraints. Additionally, we introduce a novel spatial frontier detection system and map merger, integrated with an adaptive frontier assigner for optimal coverage balancing the exploration and reconstruction objectives. In extensive ROS-Gazebo simulations, SPACE demonstrated superior performance over state-of-the-art approaches in both exploration and mapping metrics.
Related papers
- OMEGA: Efficient Occlusion-Aware Navigation for Air-Ground Robot in Dynamic Environments via State Space Model [12.09638785374894]
Air-ground robots (AGRs) are widely used in surveillance and disaster response.
Current AGR navigation systems perform well in static environments.
However, these systems face challenges in dynamic, severe occlusion scenes.
We propose OccMamba with an Efficient AGR-Planner to address these problems.
arXiv Detail & Related papers (2024-08-20T07:50:29Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
We introduce Spatial Region GPT (SpatialRGPT) to enhance VLMs' spatial perception and reasoning capabilities.
During inference, when provided with user-specified region proposals, SpatialRGPT can accurately perceive their relative directions and distances.
Our results demonstrate that SpatialRGPT significantly enhances performance in spatial reasoning tasks, both with and without local region prompts.
arXiv Detail & Related papers (2024-06-03T17:59:06Z) - From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban
Search and Rescue [46.377510400989536]
We present a novel hybrid algorithm for efficient multi-robot exploration in unknown environments with limited communication and no global positioning information.
We redefine the local best and global best positions to suit scenarios without continuous target information.
The presented work holds promise for enhancing multi-robot exploration in scenarios with limited information and communication capabilities.
arXiv Detail & Related papers (2023-11-28T17:05:25Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Reinforcement Learning with Frontier-Based Exploration via Autonomous
Environment [0.0]
This research combines an existing Visual-Graph SLAM known as ExploreORB with reinforcement learning.
The proposed algorithm aims to improve the efficiency and accuracy of ExploreORB by optimizing the exploration process of frontiers to build a more accurate map.
arXiv Detail & Related papers (2023-07-14T12:19:46Z) - FRAME: Fast and Robust Autonomous 3D point cloud Map-merging for
Egocentric multi-robot exploration [2.433860819518925]
This article presents a 3D point cloud map-merging framework for egocentric heterogeneous multi-robot exploration.
The novel proposed solution utilizes state-of-the-art place recognition learned descriptors, that through the framework's main pipeline, offer a fast and robust region overlap estimation.
The efficacy of the proposed framework is experimentally evaluated based on multiple field multi-robot exploration missions in underground environments.
arXiv Detail & Related papers (2023-01-22T21:59:38Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - UAVs Beneath the Surface: Cooperative Autonomy for Subterranean Search
and Rescue in DARPA SubT [5.145696432159643]
This paper presents a novel approach for autonomous cooperating UAVs in search and rescue operations in subterranean domains with complex topology.
The proposed system was ranked second in the Virtual Track of the DARPA SubT Finals as part of the team CTU-CRAS-NORLAB.
The proposed solution also proved to be a robust system for deployment onboard physical UAVs flying in the extremely harsh and confined environment of the real-world competition.
arXiv Detail & Related papers (2022-06-16T13:54:33Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.