FRAME: Fast and Robust Autonomous 3D point cloud Map-merging for
Egocentric multi-robot exploration
- URL: http://arxiv.org/abs/2301.09213v2
- Date: Tue, 24 Jan 2023 08:52:34 GMT
- Title: FRAME: Fast and Robust Autonomous 3D point cloud Map-merging for
Egocentric multi-robot exploration
- Authors: Nikolaos Stathoulopoulos, Anton Koval, Ali-akbar Agha-mohammadi and
George Nikolakopoulos
- Abstract summary: This article presents a 3D point cloud map-merging framework for egocentric heterogeneous multi-robot exploration.
The novel proposed solution utilizes state-of-the-art place recognition learned descriptors, that through the framework's main pipeline, offer a fast and robust region overlap estimation.
The efficacy of the proposed framework is experimentally evaluated based on multiple field multi-robot exploration missions in underground environments.
- Score: 2.433860819518925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a 3D point cloud map-merging framework for egocentric
heterogeneous multi-robot exploration, based on overlap detection and
alignment, that is independent of a manual initial guess or prior knowledge of
the robots' poses. The novel proposed solution utilizes state-of-the-art place
recognition learned descriptors, that through the framework's main pipeline,
offer a fast and robust region overlap estimation, hence eliminating the need
for the time-consuming global feature extraction and feature matching process
that is typically used in 3D map integration. The region overlap estimation
provides a homogeneous rigid transform that is applied as an initial condition
in the point cloud registration algorithm Fast-GICP, which provides the final
and refined alignment. The efficacy of the proposed framework is experimentally
evaluated based on multiple field multi-robot exploration missions in
underground environments, where both ground and aerial robots are deployed,
with different sensor configurations.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - FRAME: A Modular Framework for Autonomous Map Merging: Advancements in the Field [12.247977717070773]
This article presents a novel approach for merging 3D point cloud maps in the context of egocentric multi-robot exploration.
The proposed approach leverages state-of-the-art place recognition and learned descriptors to efficiently detect overlap between maps.
The effectiveness of the proposed framework is successfully demonstrated through multiple field missions of robot exploration.
arXiv Detail & Related papers (2024-04-27T20:54:15Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - Irregular Change Detection in Sparse Bi-Temporal Point Clouds using
Learned Place Recognition Descriptors and Point-to-Voxel Comparison [0.0]
This article proposes an innovative approach for change detection in 3D point clouds.
It uses deep learned place recognition descriptors and irregular object extraction based on voxel-to-point comparison.
The proposed method was successfully evaluated in real-world field experiments.
arXiv Detail & Related papers (2023-06-27T12:22:25Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Three dimensional unique identifier based automated georeferencing and
coregistration of point clouds in underground environment [0.0]
This study aims at overcoming practical challenges in underground or indoor laser scanning.
The developed approach involves automatically and uniquely identifiable three dimensional unique identifiers (3DUIDs) in laser scans and a 3D registration (3DReG) workflow.
The developed 3DUID can be used in roadway profile extraction, guided automation, sensor calibration, reference targets for routine survey and deformation monitoring.
arXiv Detail & Related papers (2021-02-22T01:47:50Z) - Anchor-Based Spatial-Temporal Attention Convolutional Networks for
Dynamic 3D Point Cloud Sequences [20.697745449159097]
Anchor-based Spatial-Temporal Attention Convolution operation (ASTAConv) is proposed in this paper to process dynamic 3D point cloud sequences.
The proposed convolution operation builds a regular receptive field around each point by setting several virtual anchors around each point.
The proposed method makes better use of the structured information within the local region, and learn spatial-temporal embedding features from dynamic 3D point cloud sequences.
arXiv Detail & Related papers (2020-12-20T07:35:37Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
We propose a Siamese network that jointly learns 3D local feature detection and description directly from raw 3D points.
For detecting 3D keypoints we predict the discriminativeness of the local descriptors in an unsupervised manner.
Experiments on various benchmarks demonstrate that our method achieves competitive results for both global point cloud retrieval and local point cloud registration.
arXiv Detail & Related papers (2020-07-17T20:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.