Map++: Towards User-Participatory Visual SLAM Systems with Efficient Map Expansion and Sharing
- URL: http://arxiv.org/abs/2411.02553v1
- Date: Mon, 04 Nov 2024 19:35:46 GMT
- Title: Map++: Towards User-Participatory Visual SLAM Systems with Efficient Map Expansion and Sharing
- Authors: Xinran Zhang, Hanqi Zhu, Yifan Duan, Wuyang Zhang, Longfei Shangguan, Yu Zhang, Jianmin Ji, Yanyong Zhang,
- Abstract summary: We introduce a participatory sensing approach that delegates map-building tasks to map users.
The proposed method harnesses the collective efforts of users, facilitating the expansion and ongoing update of the maps as the environment evolves.
We developed Map++, an efficient system that functions as a plug-and-play extension.
- Score: 15.481433997371925
- License:
- Abstract: Constructing precise 3D maps is crucial for the development of future map-based systems such as self-driving and navigation. However, generating these maps in complex environments, such as multi-level parking garages or shopping malls, remains a formidable challenge. In this paper, we introduce a participatory sensing approach that delegates map-building tasks to map users, thereby enabling cost-effective and continuous data collection. The proposed method harnesses the collective efforts of users, facilitating the expansion and ongoing update of the maps as the environment evolves. We realized this approach by developing Map++, an efficient system that functions as a plug-and-play extension, supporting participatory map-building based on existing SLAM algorithms. Map++ addresses a plethora of scalability issues in this participatory map-building system by proposing a set of lightweight, application-layer protocols. We evaluated Map++ in four representative settings: an indoor garage, an outdoor plaza, a public SLAM benchmark, and a simulated environment. The results demonstrate that Map++ can reduce traffic volume by approximately 46% with negligible degradation in mapping accuracy, i.e., less than 0.03m compared to the baseline system. It can support approximately $2 \times$ as many concurrent users as the baseline under the same network bandwidth. Additionally, for users who travel on already-mapped trajectories, they can directly utilize the existing maps for localization and save 47% of the CPU usage.
Related papers
- LDMapNet-U: An End-to-End System for City-Scale Lane-Level Map Updating [38.26911138211464]
Lane-level updates require precise change information and must ensure consistency with adjacent data.
Traditional methods utilize a three-stage approach-construction, change detection, and updating-which often manual verification due to accuracy limitations.
We propose LDMapNet-U, which implements a new end-to-end paradigm for city-scale lane-level map updating.
arXiv Detail & Related papers (2025-01-06T05:14:40Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Enhancing Online Road Network Perception and Reasoning with Standard Definition Maps [14.535963852751635]
We focus on leveraging lightweight and scalable priors-Standard Definition (SD) maps-in the development of online vectorized HD map representations.
A key finding is that SD map encoders are model agnostic and can be quickly adapted to new architectures that utilize bird's eye view (BEV) encoders.
Our results show that making use of SD maps as priors for the online mapping task can significantly speed up convergence and boost the performance of the online centerline perception task by 30% (mAP)
arXiv Detail & Related papers (2024-08-01T19:39:55Z) - Mind the map! Accounting for existing map information when estimating online HDMaps from sensor [15.275704436439012]
Estimating HDMaps from sensors promises to significantly lighten costs.
We propose to account for existing maps of the precise situation studied when estimating HDMaps.
We introduce MapEX, a novel online HDMap estimation framework.
arXiv Detail & Related papers (2023-11-17T13:40:10Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - Vision-based Large-scale 3D Semantic Mapping for Autonomous Driving
Applications [53.553924052102126]
We present a complete pipeline for 3D semantic mapping solely based on a stereo camera system.
The pipeline comprises a direct visual odometry front-end as well as a back-end for global temporal integration.
We propose a simple but effective voting scheme which improves the quality and consistency of the 3D point labels.
arXiv Detail & Related papers (2022-03-02T13:18:38Z) - ASH: A Modern Framework for Parallel Spatial Hashing in 3D Perception [91.24236600199542]
ASH is a modern and high-performance framework for parallel spatial hashing on GPU.
ASH achieves higher performance, supports richer functionality, and requires fewer lines of code.
ASH and its example applications are open sourced in Open3D.
arXiv Detail & Related papers (2021-10-01T16:25:40Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
arXiv Detail & Related papers (2021-01-18T00:09:30Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
We construct a lane graph from raw map data to preserve the map structure.
We exploit a fusion network consisting of four types of interactions, actor-to-lane, lane-to-lane, lane-to-actor and actor-to-actor.
Our approach significantly outperforms the state-of-the-art on the large scale Argoverse motion forecasting benchmark.
arXiv Detail & Related papers (2020-07-27T17:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.