Enhancing Indoor Mobility with Connected Sensor Nodes: A Real-Time, Delay-Aware Cooperative Perception Approach
- URL: http://arxiv.org/abs/2411.02624v1
- Date: Mon, 04 Nov 2024 21:31:45 GMT
- Title: Enhancing Indoor Mobility with Connected Sensor Nodes: A Real-Time, Delay-Aware Cooperative Perception Approach
- Authors: Minghao Ning, Yaodong Cui, Yufeng Yang, Shucheng Huang, Zhenan Liu, Ahmad Reza Alghooneh, Ehsan Hashemi, Amir Khajepour,
- Abstract summary: This paper presents a novel real-time, delay-aware cooperative perception system for indoor environments.
The system features delay-aware global perception to synchronize and aggregate data across nodes.
Our experiments, compared to baselines, demonstrate significant improvements in detection accuracy and robustness against delays.
- Score: 11.427488895308073
- License:
- Abstract: This paper presents a novel real-time, delay-aware cooperative perception system designed for intelligent mobility platforms operating in dynamic indoor environments. The system contains a network of multi-modal sensor nodes and a central node that collectively provide perception services to mobility platforms. The proposed Hierarchical Clustering Considering the Scanning Pattern and Ground Contacting Feature based Lidar Camera Fusion improve intra-node perception for crowded environment. The system also features delay-aware global perception to synchronize and aggregate data across nodes. To validate our approach, we introduced the Indoor Pedestrian Tracking dataset, compiled from data captured by two indoor sensor nodes. Our experiments, compared to baselines, demonstrate significant improvements in detection accuracy and robustness against delays. The dataset is available in the repository: https://github.com/NingMingHao/MVSLab-IndoorCooperativePerception
Related papers
- Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.
We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework to address this problem.
HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - StreamLTS: Query-based Temporal-Spatial LiDAR Fusion for Cooperative Object Detection [0.552480439325792]
We propose Time-Aligned COoperative Object Detection (TA-COOD), for which we adapt widely used dataset OPV2V and DairV2X.
Experiment results confirm the superior efficiency of our fully sparse framework compared to the state-of-the-art dense models.
arXiv Detail & Related papers (2024-07-04T10:56:10Z) - Robust Collaborative Perception without External Localization and Clock Devices [52.32342059286222]
A consistent spatial-temporal coordination across multiple agents is fundamental for collaborative perception.
Traditional methods depend on external devices to provide localization and clock signals.
We propose a novel approach: aligning by recognizing the inherent geometric patterns within the perceptual data of various agents.
arXiv Detail & Related papers (2024-05-05T15:20:36Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Edge-Aided Sensor Data Sharing in Vehicular Communication Networks [8.67588704947974]
We consider sensor data sharing and fusion in a vehicular network with both, vehicle-to-infrastructure and vehicle-to-vehicle communication.
We propose a method, named Bidirectional Feedback Noise Estimation (BiFNoE), in which an edge server collects and caches sensor measurement data from vehicles.
We show that the perception accuracy is on average improved by around 80 % with only 12 kbps uplink and 28 kbps downlink bandwidth.
arXiv Detail & Related papers (2022-06-17T16:30:56Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
We study a sensor's transmit power minimization subject to the peak-AoI requirement and a probabilistic constraint on queuing latency.
We propose a local-model selection approach which accounts for correlation among the sensor's training data.
Numerical results show the tradeoff between the transmit power, peak AoI, and delay's tail distribution.
arXiv Detail & Related papers (2021-08-17T08:38:31Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Data-Driven Distributed State Estimation and Behavior Modeling in Sensor
Networks [5.817715558396024]
We formulate the problem of simultaneous state estimation and behavior learning in a sensor network.
We propose a simple yet effective solution by extending the Gaussian process-based Bayes filters (GP-BayesFilters) to an online, distributed setting.
The effectiveness of the proposed method is evaluated on tracking objects with unknown movement behaviors using both synthetic data and data collected from a multi-robot platform.
arXiv Detail & Related papers (2020-09-22T21:31:18Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.