論文の概要: M-CELS: Counterfactual Explanation for Multivariate Time Series Data Guided by Learned Saliency Maps
- arxiv url: http://arxiv.org/abs/2411.02649v1
- Date: Mon, 04 Nov 2024 22:16:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:04.290384
- Title: M-CELS: Counterfactual Explanation for Multivariate Time Series Data Guided by Learned Saliency Maps
- Title(参考訳): M-CELS:学習されたサリエンシマップによる多変量時系列データの非現実的説明
- Authors: Peiyu Li, Omar Bahri, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi,
- Abstract要約: M-CELSは,多次元時系列分類タスクにおける解釈可能性を高めるために設計された,対物的説明モデルである。
その結果, M-CELS の有効性, 近接性, 疎度に優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.9374652839580181
- License:
- Abstract: Over the past decade, multivariate time series classification has received great attention. Machine learning (ML) models for multivariate time series classification have made significant strides and achieved impressive success in a wide range of applications and tasks. The challenge of many state-of-the-art ML models is a lack of transparency and interpretability. In this work, we introduce M-CELS, a counterfactual explanation model designed to enhance interpretability in multidimensional time series classification tasks. Our experimental validation involves comparing M-CELS with leading state-of-the-art baselines, utilizing seven real-world time-series datasets from the UEA repository. The results demonstrate the superior performance of M-CELS in terms of validity, proximity, and sparsity, reinforcing its effectiveness in providing transparent insights into the decisions of machine learning models applied to multivariate time series data.
- Abstract(参考訳): 過去10年間で、多変量時系列分類が注目されている。
多変量時系列分類のための機械学習(ML)モデルは、大きな進歩を遂げ、幅広いアプリケーションやタスクで大きな成功を収めた。
多くの最先端のMLモデルの課題は、透明性と解釈可能性の欠如である。
本研究では,多次元時系列分類タスクにおける解釈可能性を高めるために,M-CELSを提案する。
UEAリポジトリから7つの実世界の時系列データセットを利用して,M-CELSを最先端のベースラインと比較する実験的な検証を行った。
その結果,M-CELSの有効性,近接性,疎性という点で優れた性能を示し,多変量時系列データに適用した機械学習モデルの決定に対する透過的な洞察を提供することの有効性が示された。
関連論文リスト
- Harnessing Vision Models for Time Series Analysis: A Survey [72.09716244582684]
本研究は, 時系列解析におけるLLMよりも視覚モデルの方が優れていることを示す。
既存の方法の包括的かつ詳細な概要を提供し、詳細な分類学の双対的な見解を提供する。
このフレームワークに関わる前処理と後処理のステップにおける課題に対処する。
論文 参考訳(メタデータ) (2025-02-13T00:42:11Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - VSFormer: Value and Shape-Aware Transformer with Prior-Enhanced Self-Attention for Multivariate Time Series Classification [47.92529531621406]
識別パターン(形状)と数値情報(値)の両方を組み込んだVSFormerを提案する。
さらに、教師付き情報から派生したクラス固有の事前情報を抽出し、位置エンコーディングを強化する。
30のUEAアーカイブデータセットに対する大規模な実験は、SOTAモデルと比較して、我々の手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-21T07:31:22Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Understanding Different Design Choices in Training Large Time Series Models [71.20102277299445]
不均一な時系列データに基づく大規模時系列モデル(LTSMs)のトレーニングには,ユニークな課題が伴う。
本稿では,時系列データに合わせた新しい統計プロンプトである,時系列プロンプトを提案する。
textttLTSM-bundleを導入します。
論文 参考訳(メタデータ) (2024-06-20T07:09:19Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
本稿では,Ti-MAEという新しいフレームワークを提案する。
Ti-MAEは、埋め込み時系列データをランダムにマスクアウトし、オートエンコーダを学び、ポイントレベルでそれらを再構築する。
いくつかの公開実世界のデータセットの実験では、マスク付きオートエンコーディングのフレームワークが生データから直接強力な表現を学習できることが示されている。
論文 参考訳(メタデータ) (2023-01-21T03:20:23Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Multi-Time Attention Networks for Irregularly Sampled Time Series [18.224344440110862]
不規則サンプリングは多くの時系列モデリングアプリケーションで発生する。
我々は,この設定のための新しいディープラーニングフレームワークを提案し,これをマルチ時間注意ネットワークと呼ぶ。
その結果,我々のアプローチは,ベースラインや最近提案されたモデルと同等かそれ以上の性能を示すことができた。
論文 参考訳(メタデータ) (2021-01-25T18:57:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。