Geometry of naturalistic object representations in recurrent neural network models of working memory
- URL: http://arxiv.org/abs/2411.02685v1
- Date: Mon, 04 Nov 2024 23:57:46 GMT
- Title: Geometry of naturalistic object representations in recurrent neural network models of working memory
- Authors: Xiaoxuan Lei, Takuya Ito, Pouya Bashivan,
- Abstract summary: We show how naturalistic object information is maintained in working memory in neural networks.
Our findings indicate that goal-driven RNNs employ chronological memory subspaces to track information over short time spans.
- Score: 2.028720028008411
- License:
- Abstract: Working memory is a central cognitive ability crucial for intelligent decision-making. Recent experimental and computational work studying working memory has primarily used categorical (i.e., one-hot) inputs, rather than ecologically relevant, multidimensional naturalistic ones. Moreover, studies have primarily investigated working memory during single or few cognitive tasks. As a result, an understanding of how naturalistic object information is maintained in working memory in neural networks is still lacking. To bridge this gap, we developed sensory-cognitive models, comprising a convolutional neural network (CNN) coupled with a recurrent neural network (RNN), and trained them on nine distinct N-back tasks using naturalistic stimuli. By examining the RNN's latent space, we found that: (1) Multi-task RNNs represent both task-relevant and irrelevant information simultaneously while performing tasks; (2) The latent subspaces used to maintain specific object properties in vanilla RNNs are largely shared across tasks, but highly task-specific in gated RNNs such as GRU and LSTM; (3) Surprisingly, RNNs embed objects in new representational spaces in which individual object features are less orthogonalized relative to the perceptual space; (4) The transformation of working memory encodings (i.e., embedding of visual inputs in the RNN latent space) into memory was shared across stimuli, yet the transformations governing the retention of a memory in the face of incoming distractor stimuli were distinct across time. Our findings indicate that goal-driven RNNs employ chronological memory subspaces to track information over short time spans, enabling testable predictions with neural data.
Related papers
- Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.
The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Episodic Memory Theory for the Mechanistic Interpretation of Recurrent
Neural Networks [3.683202928838613]
We propose the Episodic Memory Theory (EMT), illustrating that RNNs can be conceptualized as discrete-time analogs of the recently proposed General Sequential Episodic Memory Model.
We introduce a novel set of algorithmic tasks tailored to probe the variable binding behavior in RNNs.
Our empirical investigations reveal that trained RNNs consistently converge to the variable binding circuit, thus indicating universality in the dynamics of RNNs.
arXiv Detail & Related papers (2023-10-03T20:52:37Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats.
Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior.
arXiv Detail & Related papers (2021-02-25T02:13:52Z) - Slow manifolds in recurrent networks encode working memory efficiently
and robustly [0.0]
Working memory is a cognitive function involving the storage and manipulation of latent information over brief intervals of time.
We use a top-down modeling approach to examine network-level mechanisms of working memory.
arXiv Detail & Related papers (2021-01-08T18:47:02Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z) - Exploring weight initialization, diversity of solutions, and degradation
in recurrent neural networks trained for temporal and decision-making tasks [0.0]
Recurrent Neural Networks (RNNs) are frequently used to model aspects of brain function and structure.
In this work, we trained small fully-connected RNNs to perform temporal and flow control tasks with time-varying stimuli.
arXiv Detail & Related papers (2019-06-03T21:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.