V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
- URL: http://arxiv.org/abs/2411.02712v1
- Date: Tue, 05 Nov 2024 01:24:37 GMT
- Title: V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
- Authors: Yuxi Xie, Guanzhen Li, Xiao Xu, Min-Yen Kan,
- Abstract summary: We propose Vision-guided Direct Preference Optimization (V-DPO) to enhance visual context learning at training time.
Our analysis indicates that V-DPO excels in learning from image-contrast preference data, demonstrating its superior ability to elicit and understand nuances of visual context.
- Score: 21.248617886995103
- License:
- Abstract: Large vision-language models (LVLMs) suffer from hallucination, resulting in misalignment between the output textual response and the input visual content. Recent research indicates that the over-reliance on the Large Language Model (LLM) backbone, as one cause of the LVLM hallucination, inherently introduces bias from language priors, leading to insufficient context attention to the visual inputs. We tackle this issue of hallucination by mitigating such over-reliance through preference learning. We propose Vision-guided Direct Preference Optimization (V-DPO) to enhance visual context learning at training time. To interpret the effectiveness and generalizability of V-DPO on different types of training data, we construct a synthetic dataset containing both response- and image-contrast preference pairs, compared against existing human-annotated hallucination samples. Our approach achieves significant improvements compared with baseline methods across various hallucination benchmarks. Our analysis indicates that V-DPO excels in learning from image-contrast preference data, demonstrating its superior ability to elicit and understand nuances of visual context. Our code is publicly available at https://github.com/YuxiXie/V-DPO.
Related papers
- VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in multimodal task reasoning.
We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks.
LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension.
We propose LACING to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG)
arXiv Detail & Related papers (2024-11-21T16:33:30Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.
They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.
Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.
However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning.
Specifically, we propose POVID to generate feedback data with AI models.
We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data.
In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches.
arXiv Detail & Related papers (2024-02-18T00:56:16Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
We introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations.
Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families.
arXiv Detail & Related papers (2023-11-28T16:26:35Z) - Mitigating Hallucination in Visual Language Models with Visual
Supervision [33.05550629039951]
Large vision-language models (LVLMs) suffer from hallucination a lot.
Key problem lies in its weak ability to comprehend detailed content in a multi-modal context.
In this paper, we bring more detailed vision annotations and more discriminative vision models to facilitate the training of LVLMs.
arXiv Detail & Related papers (2023-11-27T09:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.