OViP: Online Vision-Language Preference Learning
- URL: http://arxiv.org/abs/2505.15963v1
- Date: Wed, 21 May 2025 19:26:09 GMT
- Title: OViP: Online Vision-Language Preference Learning
- Authors: Shujun Liu, Siyuan Wang, Zejun Li, Jianxiang Wang, Cheng Zeng, Zhongyu Wei,
- Abstract summary: Large vision-language models (LVLMs) remain vulnerable to hallucination, often generating content misaligned with visual inputs.<n>We propose an Online Vision-language Preference Learning framework that dynamically constructs contrastive training data based on the model's own hallucinated outputs.<n>Experiments on hallucination and general benchmarks demonstrate that OViP effectively reduces hallucinations while preserving core multi-modal capabilities.
- Score: 26.54737360667123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large vision-language models (LVLMs) remain vulnerable to hallucination, often generating content misaligned with visual inputs. While recent approaches advance multi-modal Direct Preference Optimization (DPO) to mitigate hallucination, they typically rely on predefined or randomly edited negative samples that fail to reflect actual model errors, limiting training efficacy. In this work, we propose an Online Vision-language Preference Learning (OViP) framework that dynamically constructs contrastive training data based on the model's own hallucinated outputs. By identifying semantic differences between sampled response pairs and synthesizing negative images using a diffusion model, OViP generates more relevant supervision signals in real time. This failure-driven training enables adaptive alignment of both textual and visual preferences. Moreover, we refine existing evaluation protocols to better capture the trade-off between hallucination suppression and expressiveness. Experiments on hallucination and general benchmarks demonstrate that OViP effectively reduces hallucinations while preserving core multi-modal capabilities.
Related papers
- Analyzing and Mitigating Object Hallucination: A Training Bias Perspective [108.09666587800781]
We introduce a new benchmark, POPEv2, which consists of counterfactual images collected from the training data of LVLMs with certain objects masked.<n>We find that current LVLMs suffer from training bias: they fail to fully leverage their training data and hallucinate more frequently on images seen during training.<n>We propose Obliviate, an efficient and lightweight unlearning method designed to mitigate object hallucination via training bias unlearning.
arXiv Detail & Related papers (2025-08-06T15:51:02Z) - Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations.<n>In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification.
arXiv Detail & Related papers (2025-04-17T17:59:22Z) - Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models - [1.2499537119440245]
Efficient Contrastive Decoding (ECD) is a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time.<n>Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
arXiv Detail & Related papers (2025-04-16T14:50:25Z) - Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.<n>We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal task reasoning.<n>They often generate responses that appear plausible yet do not accurately reflect the visual content, a phenomenon known as hallucination.<n>Recent approaches have introduced training-free methods to mitigate hallucinations by adjusting the decoding strategy during the inference stage.<n>We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfD
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization [21.248617886995103]
We propose Vision-guided Direct Preference Optimization (V-DPO) to enhance visual context learning at training time.
Our analysis indicates that V-DPO excels in learning from image-contrast preference data, demonstrating its superior ability to elicit and understand nuances of visual context.
arXiv Detail & Related papers (2024-11-05T01:24:37Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.<n>They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.<n>Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.<n>However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.<n>We generate a small-size hallucination annotation dataset by proprietary models.<n>Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning.
Specifically, we propose POVID to generate feedback data with AI models.
We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data.
In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches.
arXiv Detail & Related papers (2024-02-18T00:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.