Generalization and Risk Bounds for Recurrent Neural Networks
- URL: http://arxiv.org/abs/2411.02784v1
- Date: Tue, 05 Nov 2024 03:49:06 GMT
- Title: Generalization and Risk Bounds for Recurrent Neural Networks
- Authors: Xuewei Cheng, Ke Huang, Shujie Ma,
- Abstract summary: We establish a new generalization error bound for vanilla RNNs.
We provide a unified framework to calculate the Rademacher complexity that can be applied to a variety of loss functions.
- Score: 3.0638061480679912
- License:
- Abstract: Recurrent Neural Networks (RNNs) have achieved great success in the prediction of sequential data. However, their theoretical studies are still lagging behind because of their complex interconnected structures. In this paper, we establish a new generalization error bound for vanilla RNNs, and provide a unified framework to calculate the Rademacher complexity that can be applied to a variety of loss functions. When the ramp loss is used, we show that our bound is tighter than the existing bounds based on the same assumptions on the Frobenius and spectral norms of the weight matrices and a few mild conditions. Our numerical results show that our new generalization bound is the tightest among all existing bounds in three public datasets. Our bound improves the second tightest one by an average percentage of 13.80% and 3.01% when the $\tanh$ and ReLU activation functions are used, respectively. Moreover, we derive a sharp estimation error bound for RNN-based estimators obtained through empirical risk minimization (ERM) in multi-class classification problems when the loss function satisfies a Bernstein condition.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Approximation Bounds for Recurrent Neural Networks with Application to Regression [7.723218675113336]
We study the approximation capacity of deep ReLU recurrent neural networks (RNNs) and explore the convergence properties of nonparametric least squares regression using RNNs.
We derive upper bounds on the approximation error of RNNs for H"older smooth functions.
Our results provide statistical guarantees on the performance of RNNs.
arXiv Detail & Related papers (2024-09-09T13:02:50Z) - Polynomial-Time Solutions for ReLU Network Training: A Complexity
Classification via Max-Cut and Zonotopes [70.52097560486683]
We prove that the hardness of approximation of ReLU networks not only mirrors the complexity of the Max-Cut problem but also, in certain special cases, exactly corresponds to it.
In particular, when $epsilonleqsqrt84/83-1approx 0.006$, we show that it is NP-hard to find an approximate global dataset of the ReLU network objective with relative error $epsilon$ with respect to the objective value.
arXiv Detail & Related papers (2023-11-18T04:41:07Z) - A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge
Regression [23.156642467474995]
finite-rank kernels naturally appear in several machine learning problems, e.g. when fine-tuning a pre-trained deep neural network's last layer to adapt it to a novel task.
We address this gap by deriving sharp non-asymptotic upper and lower bounds for the KRR test error of any finite-rank KRR.
Our bounds are tighter than previously derived bounds on finite-rank KRR, and unlike comparable results, they also remain valid for any regularization parameters.
arXiv Detail & Related papers (2023-10-02T08:52:29Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Generalization Bounds for Magnitude-Based Pruning via Sparse Matrix
Sketching [2.1485350418225244]
We build on Arora et al. [ 2018] where the error depends on one, the approximation induced by pruning, and two, the number of parameters in the pruned model.
The pruned estimates are close to the unpruned functions with high probability, which improves the first criteria.
We empirically verify the success of this new method on ReLU-activated Feed Forward Networks on the MNIST and CIFAR10 datasets.
arXiv Detail & Related papers (2023-05-30T07:00:06Z) - Generalization Analysis for Contrastive Representation Learning [80.89690821916653]
Existing generalization error bounds depend linearly on the number $k$ of negative examples.
We establish novel generalization bounds for contrastive learning which do not depend on $k$, up to logarithmic terms.
arXiv Detail & Related papers (2023-02-24T01:03:56Z) - A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized
Linear Models [33.36787620121057]
We prove a new generalization bound that shows for any class of linear predictors in Gaussian space.
We use our finite-sample bound to directly recover the "optimistic rate" of Zhou et al. (2021)
We show that application of our bound generalization using localized Gaussian width will generally be sharp for empirical risk minimizers.
arXiv Detail & Related papers (2022-10-21T16:16:55Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.