DeepContext: A Context-aware, Cross-platform, and Cross-framework Tool for Performance Profiling and Analysis of Deep Learning Workloads
- URL: http://arxiv.org/abs/2411.02797v1
- Date: Tue, 05 Nov 2024 04:15:26 GMT
- Title: DeepContext: A Context-aware, Cross-platform, and Cross-framework Tool for Performance Profiling and Analysis of Deep Learning Workloads
- Authors: Qidong Zhao, Hao Wu, Yuming Hao, Zilingfeng Ye, Jiajia Li, Xu Liu, Keren Zhou,
- Abstract summary: This paper introduces DeepContext, a novel profiler that links program contexts across high-level Python code, deep learning frameworks, underlying libraries written in C/C++, as well as device code executed on GPUs.
DeepContext incorporates measurements of both coarse- and fine-grained performance metrics for major deep learning frameworks, such as PyTorch and JAX.
In addition, DeepContext integrates a novel GUI that allows users to quickly identify hotpots and an innovative automated performance analyzer that suggests users with potential optimizations based on performance metrics and program context.
- Score: 5.987963635879264
- License:
- Abstract: Effective performance profiling and analysis are essential for optimizing training and inference of deep learning models, especially given the growing complexity of heterogeneous computing environments. However, existing tools often lack the capability to provide comprehensive program context information and performance optimization insights for sophisticated interactions between CPUs and GPUs. This paper introduces DeepContext, a novel profiler that links program contexts across high-level Python code, deep learning frameworks, underlying libraries written in C/C++, as well as device code executed on GPUs. DeepContext incorporates measurements of both coarse- and fine-grained performance metrics for major deep learning frameworks, such as PyTorch and JAX, and is compatible with GPUs from both Nvidia and AMD, as well as various CPU architectures, including x86 and ARM. In addition, DeepContext integrates a novel GUI that allows users to quickly identify hotpots and an innovative automated performance analyzer that suggests users with potential optimizations based on performance metrics and program context. Through detailed use cases, we demonstrate how DeepContext can help users identify and analyze performance issues to enable quick and effective optimization of deep learning workloads. We believe Deep Context is a valuable tool for users seeking to optimize complex deep learning workflows across multiple compute environments.
Related papers
- Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning [68.43706033424378]
This study introduces an innovative method designed to increase in-context text length in large language models (MLLMs) efficiently.
We present Visualized In-Context Text Processing (VisInContext), which processes long in-context text using visual tokens.
This technique significantly reduces GPU memory usage and floating point operations (FLOPs) for both training and inferenceing stage.
arXiv Detail & Related papers (2024-06-04T17:59:25Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Towards making the most of NLP-based device mapping optimization for
OpenCL kernels [5.6596607119831575]
We extend the work of Cummins et al., namely Deeptune, that tackles the problem of optimal device selection ( CPU or GPU) for accelerated OpenCL kernels.
We propose four different models that provide enhanced contextual information of source codes.
Experimental results show that our proposed methodology surpasses that of Cummins et al. work, providing up to 4% improvement in prediction accuracy.
arXiv Detail & Related papers (2022-08-30T10:20:55Z) - Deep Learning Models on CPUs: A Methodology for Efficient Training [1.7150798380270715]
This paper makes several contributions to research on training deep learning models using CPUs.
It presents a method for optimizing the training of deep learning models on Intel CPUs and a toolkit called ProfileDNN.
arXiv Detail & Related papers (2022-06-20T22:42:14Z) - Context-based Deep Learning Architecture with Optimal Integration Layer
for Image Parsing [0.0]
The proposed three-layer context-based deep architecture is capable of integrating context explicitly with visual information.
The experimental outcomes when evaluated on benchmark datasets are promising.
arXiv Detail & Related papers (2022-04-13T07:35:39Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
This paper aims to assess the feasibility of using purely static information (e.g., abstract syntax tree or AST) of applications to predict performance change based on the change in code structure.
Our evaluations of several deep embedding learning methods demonstrate that tree-based Long Short-Term Memory (LSTM) models can leverage the hierarchical structure of source-code to discover latent representations and achieve up to 84% (individual problem) and 73% (combined dataset with multiple of problems) accuracy in predicting the change in performance.
arXiv Detail & Related papers (2021-02-12T16:59:12Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z) - Towards High Performance Java-based Deep Learning Frameworks [0.22940141855172028]
Modern cloud services have set the demand for fast and efficient data processing.
This demand is common among numerous application domains, such as deep learning, data mining, and computer vision.
In this paper we have employed TornadoVM, a state-of-the-art programming framework to transparently accelerate Deep Netts; a Java-based deep learning framework.
arXiv Detail & Related papers (2020-01-13T13:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.