VideoICL: Confidence-based Iterative In-context Learning for Out-of-Distribution Video Understanding
- URL: http://arxiv.org/abs/2412.02186v1
- Date: Tue, 03 Dec 2024 05:54:43 GMT
- Title: VideoICL: Confidence-based Iterative In-context Learning for Out-of-Distribution Video Understanding
- Authors: Kangsan Kim, Geon Park, Youngwan Lee, Woongyeong Yeo, Sung Ju Hwang,
- Abstract summary: Video large multimodal models (LMMs) have significantly improved their video understanding and reasoning capabilities.
Their performance drops on out-of-distribution (OOD) tasks that are underrepresented in training data.
Traditional methods like fine-tuning on OOD datasets are impractical due to high computational costs.
We propose VideoICL, a novel video in-context learning framework for OOD tasks.
- Score: 48.26536049440913
- License:
- Abstract: Recent advancements in video large multimodal models (LMMs) have significantly improved their video understanding and reasoning capabilities. However, their performance drops on out-of-distribution (OOD) tasks that are underrepresented in training data. Traditional methods like fine-tuning on OOD datasets are impractical due to high computational costs. While In-context learning (ICL) with demonstration examples has shown promising generalization performance in language tasks and image-language tasks without fine-tuning, applying ICL to video-language tasks faces challenges due to the limited context length in Video LMMs, as videos require longer token lengths. To address these issues, we propose VideoICL, a novel video in-context learning framework for OOD tasks that introduces a similarity-based relevant example selection strategy and a confidence-based iterative inference approach. This allows to select the most relevant examples and rank them based on similarity, to be used for inference. If the generated response has low confidence, our framework selects new examples and performs inference again, iteratively refining the results until a high-confidence response is obtained. This approach improves OOD video understanding performance by extending effective context length without incurring high costs. The experimental results on multiple benchmarks demonstrate significant performance gains, especially in domain-specific scenarios, laying the groundwork for broader video comprehension applications. Code will be released at https://github.com/KangsanKim07/VideoICL
Related papers
- Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Retrieval-based Video Language Model for Efficient Long Video Question
Answering [39.474247695753725]
We introduce a retrieval-based video language model (R-VLM) for efficient and interpretable long video QA.
Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks.
Our experimental results validate the effectiveness of our framework for comprehending long videos.
arXiv Detail & Related papers (2023-12-08T09:48:36Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
Large language models (LLMs) have demonstrated their ability to learn in-context.
The effectiveness of in-context learning is heavily reliant on the quality of the selected examples.
We propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples.
arXiv Detail & Related papers (2023-07-14T05:23:08Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
Large pretrained language models (LMs) have shown impressive In-Context Learning (ICL) ability.
We propose CEIL (Compositional Exemplars for In-context Learning) to model the interaction between the given input and in-context examples.
We validate CEIL on 12 classification and generation datasets from 7 distinct NLP tasks, including sentiment analysis, paraphrase detection, natural language inference, commonsense reasoning, open-domain question answering, code generation, and semantic parsing.
arXiv Detail & Related papers (2023-02-11T14:02:08Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z) - Video Understanding as Machine Translation [53.59298393079866]
We tackle a wide variety of downstream video understanding tasks by means of a single unified framework.
We report performance gains over the state-of-the-art on several downstream tasks including video classification (EPIC-Kitchens), question answering (TVQA), captioning (TVC, YouCook2, and MSR-VTT)
arXiv Detail & Related papers (2020-06-12T14:07:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.