論文の概要: Sparse Orthogonal Parameters Tuning for Continual Learning
- arxiv url: http://arxiv.org/abs/2411.02813v1
- Date: Tue, 05 Nov 2024 05:19:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:59:19.608125
- Title: Sparse Orthogonal Parameters Tuning for Continual Learning
- Title(参考訳): 連続学習のためのスパース直交パラメータチューニング
- Authors: Kun-Peng Ning, Hai-Jian Ke, Yu-Yang Liu, Jia-Yu Yao, Yong-Hong Tian, Li Yuan,
- Abstract要約: 事前学習モデル(PTM)に基づく連続学習手法が近年注目されている。
本稿では,SoTU(Sparse Orthogonal Parameters TUning)と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 34.462967722928724
- License:
- Abstract: Continual learning methods based on pre-trained models (PTM) have recently gained attention which adapt to successive downstream tasks without catastrophic forgetting. These methods typically refrain from updating the pre-trained parameters and instead employ additional adapters, prompts, and classifiers. In this paper, we from a novel perspective investigate the benefit of sparse orthogonal parameters for continual learning. We found that merging sparse orthogonality of models learned from multiple streaming tasks has great potential in addressing catastrophic forgetting. Leveraging this insight, we propose a novel yet effective method called SoTU (Sparse Orthogonal Parameters TUning). We hypothesize that the effectiveness of SoTU lies in the transformation of knowledge learned from multiple domains into the fusion of orthogonal delta parameters. Experimental evaluations on diverse CL benchmarks demonstrate the effectiveness of the proposed approach. Notably, SoTU achieves optimal feature representation for streaming data without necessitating complex classifier designs, making it a Plug-and-Play solution.
- Abstract(参考訳): 事前学習モデル(PTM)に基づく連続学習手法が近年注目されている。
これらのメソッドは通常、事前訓練されたパラメータの更新を控え、代わりにアダプタ、プロンプト、分類器を使用する。
本稿では,連続学習におけるスパース直交パラメータの利点について,新しい視点から検討する。
複数のストリーミングタスクから学習したモデルのスパース直交性をマージすることは、破滅的な忘れに対処する大きな可能性を秘めている。
そこで本研究では,SoTU(Sparse Orthogonal Parameters TUning)と呼ばれる新しい手法を提案する。
我々は、SoTUの有効性は、複数のドメインから学んだ知識を直交デルタパラメータの融合に変換することにあると仮定する。
各種CLベンチマークの実験により,提案手法の有効性が示された。
特に、SoTUは複雑な分類器の設計を必要とせずに、ストリーミングデータに最適な特徴表現を実現し、Plug-and-Playソリューションとなる。
関連論文リスト
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Parameter-Selective Continual Test-Time Adaptation [3.480626767752489]
継続的テスト時間適応(CTTA)は、継続的なドメインシフトの下でテスト期間中に、事前トレーニングされたモデルを常に変化する環境に適応することを目的としている。
PSMT法は、ドメインシフトの下でMTネットワーク内の臨界パラメータを効果的に更新することができる。
論文 参考訳(メタデータ) (2024-07-02T13:18:15Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
本研究では,UniPELTフレームワークをベースとした新しい適応手法を提案する。
提案手法では, ベースモデルパラメータの最小限の再学習を行うことなく, 事前学習したモデルを新しいタスクに効率的に転送できるアダプタを用いる。
論文 参考訳(メタデータ) (2024-05-09T01:40:38Z) - Semantically-Shifted Incremental Adapter-Tuning is A Continual ViTransformer [44.10678347943115]
クラスインクリメンタルラーニング(CIL)は、モデルが破滅的な忘れを克服しつつ、新しいクラスを継続的に学習できるようにすることを目的としている。
本稿では,連続学習の文脈において,異なるパラメータ効率チューニング(PET)手法を再検討する。
適応チューニングは,各学習セッションにおいてパラメータ拡張がなくても,プロンプトベースの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-29T05:23:12Z) - Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual Design Approach [17.678759882763078]
事前訓練されたビジョントランスフォーマーの微調整は、下流のタスクにモデルを十分にカスタマイズすることを目的としている。
事前訓練されたモデルの一般化可能な表現能力を維持することと、タスク固有の特徴を取得することのバランスを取ることは重要な課題である。
本稿では,Residual-based Low-Rank Rescaling (RLRR)ファインチューニング戦略を提案する。
論文 参考訳(メタデータ) (2024-03-28T00:14:53Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - Rethinking Efficient Tuning Methods from a Unified Perspective [34.67645496324432]
我々はPETLの設計パラダイムを再検討し、パラメータ効率の伝達学習のための統一的なフレームワークU-Tuningを導出する。
U-Tuningフレームワークは、既存の手法を同時に包含し、パラメータ効率の移行学習のための新しいアプローチを導出することができる。
論文 参考訳(メタデータ) (2023-03-01T17:38:03Z) - Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for
Pre-trained Language Models [90.24999406296867]
標準の微調整とは対照的に、デルタチューニングはモデルパラメータのごく一部を微調整するだけであり、残りは触れないままである。
近年の研究では、パラメータ選択の異なる一連のデルタチューニング手法が、フルパラメータの微調整と同等の性能を達成できることが示されている。
論文 参考訳(メタデータ) (2022-03-14T07:56:32Z) - Towards a Unified View of Parameter-Efficient Transfer Learning [108.94786930869473]
下流タスクにおける大規模事前学習言語モデルの微調整は、NLPにおけるデファクト学習パラダイムとなっている。
近年の研究では,少数の(外部)パラメータのみを微調整するだけで高い性能が得られるパラメータ効率の伝達学習法が提案されている。
我々は、最先端のパラメータ効率変換学習手法の設計を分解し、それらの相互接続を確立する統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-08T20:22:26Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
レジリエンスとモメンタム(AdaRem)を用いた適応勾配法を提案する。
AdaRemは、過去の1つのパラメータの変化方向が現在の勾配の方向と一致しているかどうかに応じてパラメータワイズ学習率を調整する。
本手法は,学習速度とテスト誤差の観点から,従来の適応学習率に基づくアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-10-21T14:49:00Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。