Synchronous manipulation of nuclear spins via boron vacancy centers in hexagonal boron nitride
- URL: http://arxiv.org/abs/2411.02828v1
- Date: Tue, 05 Nov 2024 06:00:20 GMT
- Title: Synchronous manipulation of nuclear spins via boron vacancy centers in hexagonal boron nitride
- Authors: Fattah Sakuldee, Mehdi Abdi,
- Abstract summary: We develop a method for entangling operations on nuclear spins surrounding a negatively charged boron vacancy point defect in hexagonal boron nitride (hBN)
We show that in the presence of a background magnetic field one can collectively manipulate the state of the nuclei with $hatU_z$ and $hatU_x$ rotations.
Our work can serve as the groundstone for exploiting the nuclear spins in hBN in future quantum technological applications.
- Score: 0.0
- License:
- Abstract: We develop a method for entangling operations on nuclear spins surrounding a negatively charged boron vacancy (VB-center) point defect in hexagonal boron nitride (hBN). To this end, we propose to employ the electron spin of a VB-center as a control qubit. We show that in the presence of a background magnetic field and by applying control pulses one can collectively manipulate the state of the nuclei with $\hat{U}_z$ and $\hat{U}_x$ rotations. These rotations can serve for implementing the synchronous three-qubit $X$, $Z$, and the Hadamard gates. Through our numerical analyses considering realistic system parameters and the decoherence effects, we demonstrate that these gates can be executed with high fidelities. Furthermore, as an example for the application of our toolbox, we utilize these collective gates to prepare the highly entangled GHZ states among the three nuclear spins with a fidelity of $0.99$. By including the electron decoherence effects we find that the relative deviations of the gate fidelities from the noisy terms are negligibly small, proving the noise-resilience of our protocols. Our work can serve as the groundstone for exploiting the nuclear spins in hBN in future quantum technological applications.
Related papers
- High-Fidelity Entangling Gates for Electron and Nuclear Spin Qubits in Diamond [0.0]
We propose schemes for fast and high-fidelity entangling gates on a nitrogen-vacancy center in diamond.
We predict a complete suppression of off-resonant driving errors for two-qubit gates when addressing the NV electron spin conditioned on states of nuclear spins of the nitrogen atom of the defect.
arXiv Detail & Related papers (2024-03-18T08:07:55Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Robust Nuclear Spin Polarization via Ground-State Level Anti-Crossing of Boron Vacancy Defects in Hexagonal Boron Nitride [6.181926071859319]
Nuclear spin polarization plays a crucial role in quantum information processing and quantum sensing.
We show that GSLAC-assisted nuclear polarization can be achieved with significantly lower laser power than excited-state level anti-crossing.
arXiv Detail & Related papers (2023-06-28T06:48:42Z) - Generation of genuine all-way entanglement in defect-nuclear spin systems through dynamical decoupling sequences [0.0]
Multipartite entangled states are an essential resource for sensing, quantum error correction, and cryptography.
Here we show how to prepare high-quality GHZ$_M$-like states with minimal cross-talk.
arXiv Detail & Related papers (2023-02-11T02:50:26Z) - Indirect Control of the $\rm {}^{29}SiV^{-}$ Nuclear Spin in Diamond [0.8793721044482612]
Coherent control and optical readout of the electron spin of the $29$SiV$-$ center in diamond has been demonstrated.
Nuclear spins may be even better suited for many applications in quantum information processing due to their long coherence times.
arXiv Detail & Related papers (2022-03-19T09:41:32Z) - Tunable Gyromagnetic Augmentation of Nuclear Spins in Diamond [0.0]
This work identifies regimes in which we are able to implement fast quantum control of dark nuclear spins.
It lays the foundations for further inquiry into rapid control of long-lived spin qubits at room temperature.
arXiv Detail & Related papers (2021-09-28T06:14:51Z) - Nuclei with up to $\boldsymbol{A=6}$ nucleons with artificial neural
network wave functions [52.77024349608834]
We use artificial neural networks to compactly represent the wave functions of nuclei.
We benchmark their binding energies, point-nucleon densities, and radii with the highly accurate hyperspherical harmonics method.
arXiv Detail & Related papers (2021-08-15T23:02:39Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.