Decoherence time of the ground state spin of $V_{B}$ centers in hexagonal boron nitride
- URL: http://arxiv.org/abs/2501.08055v2
- Date: Mon, 10 Feb 2025 18:42:40 GMT
- Title: Decoherence time of the ground state spin of $V_{B}$ centers in hexagonal boron nitride
- Authors: Fatemeh Tarighi Tabesh, Saleh Rahimi-Keshari, Mehdi Abdi,
- Abstract summary: Ground-state spin of defects in hexagonal boron nitride offers a promising platform for quantum information applications.
A key characteristic of a qubit is its decoherence time, as its duration and controllability are critical for practical applications in quantum technologies.
We show that, in the presence of the dipolar hyperfine interactions, Hahn-echo coherence time of the $V_B$ electron spin is approximately $30: mathrmmu s$ at room temperature.
- Score: 0.0
- License:
- Abstract: The ground-state spin of optically active defects in hexagonal boron nitride (hBN) offers a promising platform for quantum information applications, such as qubits for quantum computing and nanoscale sensing. A key characteristic of a qubit is its decoherence time, as its duration and controllability are critical for practical applications in quantum technologies. In this work, we investigate the electron spin dephasing time of the negatively charged boron vacancies, $V_{B}$ centers, in the hBN lattice by considering the dipolar hyperfine as well as spin-phonon interactions. We employ an approximate method based on the Holstein-Primakoff transformation to take into account a large number of nuclear spins and Debye model to consider the effect of lattice phonons. We show that, in the presence of the dipolar hyperfine interactions, Hahn-echo coherence time of the $V_{B}$ electron spin is approximately $30\: \mathrm{\mu s}$ at room temperature. Our results provide a step forward in understanding the $V_{B}$ defect decoherence in the hBN, which might be used for quantum information applications.
Related papers
- Coherent dynamics of strongly interacting electronic spin defects in
hexagonal boron nitride [3.93972364832565]
Optically active spin defects in van der Waals materials are promising platforms for modern quantum technologies.
Here we investigate the coherent dynamics of strongly interacting ensembles of negatively charged boron-vacancy centers in hexagonal boron nitride (hBN) with varying defect density.
Our results provide new insights on the spin and charge properties of $mathrmV_mathrmB-$, which are important for future use of defects in hBN as quantum sensors and simulators.
arXiv Detail & Related papers (2022-10-20T18:00:00Z) - Active spin lattice hyperpolarization: Application to hexagonal boron
nitride color centers [0.0]
The active driving of the electron spin of a color center is known as a method for the hyperpolarization of the surrounding nuclear spin bath.
Here, we investigate the efficiency of this approach for various spin coupling schemes in a one-dimensional Heisenberg chain coupled to a central spin.
Our results suggest that a high degree of hyperpolarization in the boron and nitrogen nuclear spin lattices is achievable even starting from a fully thermal bath.
arXiv Detail & Related papers (2022-10-07T05:42:41Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Decoherence of V$_{\rm B}^{-}$ spin defects in monoisotopic hexagonal
boron nitride [0.0]
Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms.
Here we rely on hBN crystals isotopically enriched with either $10$B or $11$B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared.
arXiv Detail & Related papers (2021-12-19T15:51:07Z) - $\textit{Ab initio}$ and group theoretical study of properties of the
$\text{C}_\text{2}\text{C}_\text{N}$ carbon trimer defect in h-BN [0.0]
Hexagonal boron nitride (h-BN) is a promising platform for quantum information processing.
Recent studies suggest that carbon trimers might be the defect responsible for single-photon emission in the visible spectral range in h-BN.
arXiv Detail & Related papers (2021-10-18T21:27:20Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Room Temperature Coherent Control of Spin Defects in hexagonal Boron
Nitride [0.0]
Optically active defects in solids with accessible spin states are promising candidates for solid state quantum information and sensing applications.
We realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN)
Our results are important for employment of van der Waals materials for quantum technologies.
arXiv Detail & Related papers (2020-10-23T16:31:37Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.