Enhancement of an Unruh-DeWitt battery performance through quadratic environmental coupling
- URL: http://arxiv.org/abs/2411.02849v1
- Date: Tue, 05 Nov 2024 06:43:41 GMT
- Title: Enhancement of an Unruh-DeWitt battery performance through quadratic environmental coupling
- Authors: Arnab Mukherjee, Sunandan Gangopadhyay, A. S. Majumdar,
- Abstract summary: We consider an Unruh-DeWitt detector driven by a coherent classical pulse as a quantum battery.
We show that the quadratic scalar field coupling enhances coherence and stability.
We observe that decoherence is mitigated significantly, resulting in remarkable improvement in the battery capacity and efficiency.
- Score: 0.10713888959520207
- License:
- Abstract: We investigate relativistic effects on the performance of a quantum battery in an open quantum framework. We consider an Unruh-DeWitt detector driven by a coherent classical pulse as a quantum battery that is interacting with a massless scalar field through a quadratic coupling. The battery follows a trajectory composed of uniform acceleration along one direction, combined with constant four-velocity components in the orthogonal plane to the acceleration. Accelerated motion degrades the performance of the quantum battery rapidly in the absence of the orthogonal velocity component. We show that the quadratic scalar field coupling enhances coherence and stability in the presence of orthogonal velocity. We observe that decoherence is mitigated significantly, resulting in remarkable improvement in the battery capacity and efficiency compared to the case of the usual linear field coupling. This opens up the possibility of nonlinear environmental coupling enabling stored energy to be retained over longer durations, leading to more efficient operation of quantum devices.
Related papers
- Powering a quantum clock with a non-equilibrium steady state [50.24983453990065]
We propose powering a quantum clock with the non-thermal resources offered by the stationary state of an integrable quantum spin chain.
Using experimentally relevant examples of quantum spin chains, we suggest crossing a phase transition point is crucial for optimal performance.
arXiv Detail & Related papers (2024-12-17T17:25:11Z) - Floquet driven long-range interactions induce super-extensive scaling in quantum battery [0.0]
Long-range (LR) interactions in conjunction with Floquet driving can improve the performance of quantum batteries.
Super-linear scaling in power results from increasing the strength of interaction compared to the transverse magnetic field.
arXiv Detail & Related papers (2024-12-01T18:10:59Z) - Dissipative dynamics of an open quantum battery in the BTZ spacetime [0.0]
We consider how charging performances of a quantum battery are influenced by the presence of vacuum fluctuations of a quantum field.
Different boundary conditions for quantum field may lead to different charging performance.
Our study presents a general framework to investigate relaxation effects in curved spacetime.
arXiv Detail & Related papers (2024-09-14T02:06:28Z) - Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery [0.0]
We investigate the performance of a one-dimensional dimerized XY chain as a spin quantum battery.
We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization.
In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition.
arXiv Detail & Related papers (2024-02-14T13:40:48Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Accelerated adiabatic passage in cavity magnomechanics [0.0]
Cavity magnomechanics provides a readily-controllable hybrid system, that consisted of cavity mode, magnon mode, and phonon mode, for quantum state manipulation.
We propose two accelerated adiabatic-passage protocols based on the counterdiabatic Hamiltonian for transitionless quantum driving.
arXiv Detail & Related papers (2022-01-29T09:24:34Z) - Quantum speed-up in collisional battery charging [0.0]
We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units.
We show that coherent protocols can yield higher charging power than any possible incoherent strategy.
arXiv Detail & Related papers (2021-05-05T04:28:43Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.