Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery
- URL: http://arxiv.org/abs/2402.09169v2
- Date: Thu, 27 Jun 2024 14:46:59 GMT
- Title: Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery
- Authors: Riccardo Grazi, Daniel Sacco Shaikh, Maura Sassetti, Niccolò Traverso Ziani, Dario Ferraro,
- Abstract summary: We investigate the performance of a one-dimensional dimerized XY chain as a spin quantum battery.
We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization.
In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the performance of a one-dimensional dimerized XY chain as a spin quantum battery. Such integrable model shows a rich quantum phase diagram that emerges through a mapping of the spins onto auxiliary fermionic degrees of freedom. We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization, and address the energy stored in the systems. We observe three distinct regimes, depending on the time-scale characterizing the duration of the charging: a short-time regime related to the dynamics of the single dimers, a long-time regime related to the recurrence time of the system at finite size, and a thermodynamic limit time regime. In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition. Such a robust many-body effect, that characterizes also other models like the quantum Ising chain in a transverse field, as we prove analytically, can play a relevant role in the design of stable solid-state quantum batteries.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Topological Quantum Batteries [0.3749861135832073]
We propose an innovative design for quantum batteries (QBs) that involves coupling two-level systems to a topological photonic waveguide.
We analytically explore the thermodynamic performances of QBs.
Our findings offer valuable guidance for improving quantum battery performance through structured reservoir engineering.
arXiv Detail & Related papers (2024-05-06T17:50:35Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Metastable quantum entrainment [0.0]
We show that quantum entrainment is here characterized by fluctuations driving an incoherent process between two metastable phases.
We discuss connections with the phenomena of dissipative phase transitions and transient synchronization in open quantum systems.
arXiv Detail & Related papers (2021-09-03T10:58:21Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Dissipative dynamics of an open quantum battery [0.0]
Coupling with an external environment inevitably affects the dynamics of a quantum system.
We consider how charging performances of a quantum battery, modelled as a two level system, are influenced by the presence of an Ohmic thermal reservoir.
arXiv Detail & Related papers (2020-05-28T14:11:38Z) - Charging and energy fluctuations of a driven quantum battery [0.0]
We consider a set of N independent two-level quantum systems driven by a time dependent classical source.
Different figures of merit, such as stored energy, time of charging and energy quantum fluctuations during the charging process, are characterized.
It is shown that an optimal charging protocol, characterized by fast charging time and the absence of charging fluctuations, can be achieved.
arXiv Detail & Related papers (2020-05-11T13:01:23Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.