A Symmetric Dynamic Learning Framework for Diffeomorphic Medical Image Registration
- URL: http://arxiv.org/abs/2411.02888v1
- Date: Tue, 05 Nov 2024 08:02:44 GMT
- Title: A Symmetric Dynamic Learning Framework for Diffeomorphic Medical Image Registration
- Authors: Jinqiu Deng, Ke Chen, Mingke Li, Daoping Zhang, Chong Chen, Alejandro F. Frangi, Jianping Zhang,
- Abstract summary: This study introduces DCCNN-LSTM-Reg, a learning framework that evolves dynamically and learns a symmetrical registration path.
Our method outperforms existing approaches in both quantitative and qualitative evaluations.
- Score: 45.95917857572395
- License:
- Abstract: Diffeomorphic image registration is crucial for various medical imaging applications because it can preserve the topology of the transformation. This study introduces DCCNN-LSTM-Reg, a learning framework that evolves dynamically and learns a symmetrical registration path by satisfying a specified control increment system. This framework aims to obtain symmetric diffeomorphic deformations between moving and fixed images. To achieve this, we combine deep learning networks with diffeomorphic mathematical mechanisms to create a continuous and dynamic registration architecture, which consists of multiple Symmetric Registration (SR) modules cascaded on five different scales. Specifically, our method first uses two U-nets with shared parameters to extract multiscale feature pyramids from the images. We then develop an SR-module comprising a sequential CNN-LSTM architecture to progressively correct the forward and reverse multiscale deformation fields using control increment learning and the homotopy continuation technique. Through extensive experiments on three 3D registration tasks, we demonstrate that our method outperforms existing approaches in both quantitative and qualitative evaluations.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Fast Diffeomorphic Image Registration using Patch based Fully Convolutional Networks [5.479932919974457]
This paper proposes a novel unsupervised learning-based fully convolutional network (FCN) framework for fast diffeomorphic image registration.
Experiments are conducted on three distinct T1-weighted magnetic resonance imaging (T1w MRI) datasets.
arXiv Detail & Related papers (2024-04-05T17:46:38Z) - SITReg: Multi-resolution architecture for symmetric, inverse consistent, and topology preserving image registration [6.432072145009342]
We propose a novel deep learning registration architecture based on extracting multi-resolution feature representations.
Our method achieves state-of-the-art registration accuracy on three datasets.
arXiv Detail & Related papers (2023-03-17T19:00:24Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - A Learning Framework for Diffeomorphic Image Registration based on
Quasi-conformal Geometry [1.2891210250935146]
We propose the quasi-conformal registration network (QCRegNet), an unsupervised learning framework, to obtain diffeomorphic 2D image registrations.
QCRegNet consists of the estimator network and the Beltrami solver network (BSNet)
Results show that the registration accuracy is comparable to state-of-the-art methods and diffeomorphism is to a great extent guaranteed.
arXiv Detail & Related papers (2021-10-20T14:23:24Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.