Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization
- URL: http://arxiv.org/abs/2411.02920v1
- Date: Tue, 05 Nov 2024 09:08:46 GMT
- Title: Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization
- Authors: Pengkun Jiao, Na Zhao, Jingjing Chen, Yu-Gang Jiang,
- Abstract summary: Open-set single-source domain generalization aims to use a single-source domain to learn a robust model that can be generalized to unknown target domains.
We propose a novel learning approach based on domain expansion and boundary growth to expand the scarce source samples.
Our approach can achieve significant improvements and reach state-of-the-art performance on several cross-domain image classification datasets.
- Score: 70.02187124865627
- License:
- Abstract: Open-set single-source domain generalization aims to use a single-source domain to learn a robust model that can be generalized to unknown target domains with both domain shifts and label shifts. The scarcity of the source domain and the unknown data distribution of the target domain pose a great challenge for domain-invariant feature learning and unknown class recognition. In this paper, we propose a novel learning approach based on domain expansion and boundary growth to expand the scarce source samples and enlarge the boundaries across the known classes that indirectly broaden the boundary between the known and unknown classes. Specifically, we achieve domain expansion by employing both background suppression and style augmentation on the source data to synthesize new samples. Then we force the model to distill consistent knowledge from the synthesized samples so that the model can learn domain-invariant information. Furthermore, we realize boundary growth across classes by using edge maps as an additional modality of samples when training multi-binary classifiers. In this way, it enlarges the boundary between the inliers and outliers, and consequently improves the unknown class recognition during open-set generalization. Extensive experiments show that our approach can achieve significant improvements and reach state-of-the-art performance on several cross-domain image classification datasets.
Related papers
- StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain.
State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data.
We propose emphStyDeSty, which explicitly accounts for the alignment of the source and pseudo domains in the process of data augmentation.
arXiv Detail & Related papers (2024-06-01T02:41:34Z) - Beyond Finite Data: Towards Data-free Out-of-distribution Generalization
via Extrapolation [19.944946262284123]
Humans can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization?
We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains.
Our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2% on datasets such as VLCS.
arXiv Detail & Related papers (2024-03-08T18:44:23Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
In many settings, privacy concerns prohibit obtaining domain labels for the training data samples.
We propose a domain-adaptive approach to this problem, which operates in two steps.
Our approach achieves state-of-the-art performance on a variety of domain generalization benchmarks without using domain labels.
arXiv Detail & Related papers (2021-12-09T08:57:01Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z) - Learning to Generate Novel Domains for Domain Generalization [115.21519842245752]
This paper focuses on the task of learning from multiple source domains a model that generalizes well to unseen domains.
We employ a data generator to synthesize data from pseudo-novel domains to augment the source domains.
Our method, L2A-OT, outperforms current state-of-the-art DG methods on four benchmark datasets.
arXiv Detail & Related papers (2020-07-07T09:34:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.