Multi-Source Collaborative Style Augmentation and Domain-Invariant Learning for Federated Domain Generalization
- URL: http://arxiv.org/abs/2505.10152v2
- Date: Wed, 04 Jun 2025 10:41:14 GMT
- Title: Multi-Source Collaborative Style Augmentation and Domain-Invariant Learning for Federated Domain Generalization
- Authors: Yikang Wei,
- Abstract summary: Federated domain generalization aims to learn a generalizable model from multiple decentralized source domains for deploying on the unseen target domain.<n>We propose a multi-source collaborative style augmentation module to generate data in the broader style space.<n>By alternatively conducting collaborative style augmentation and domain-invariant learning, the model can generalize well on unseen target domain.
- Score: 0.8158530638728501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated domain generalization aims to learn a generalizable model from multiple decentralized source domains for deploying on the unseen target domain. The style augmentation methods have achieved great progress on domain generalization. However, the existing style augmentation methods either explore the data styles within isolated source domain or interpolate the style information across existing source domains under the data decentralization scenario, which leads to limited style space. To address this issue, we propose a Multi-source Collaborative Style Augmentation and Domain-invariant learning method (MCSAD) for federated domain generalization. Specifically, we propose a multi-source collaborative style augmentation module to generate data in the broader style space. Furthermore, we conduct domain-invariant learning between the original data and augmented data by cross-domain feature alignment within the same class and classes relation ensemble distillation between different classes to learn a domain-invariant model. By alternatively conducting collaborative style augmentation and domain-invariant learning, the model can generalize well on unseen target domain. Extensive experiments on multiple domain generalization datasets indicate that our method significantly outperforms the state-of-the-art federated domain generalization methods.
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
Open-set single-source domain generalization aims to use a single-source domain to learn a robust model that can be generalized to unknown target domains.
We propose a novel learning approach based on domain expansion and boundary growth to expand the scarce source samples.
Our approach can achieve significant improvements and reach state-of-the-art performance on several cross-domain image classification datasets.
arXiv Detail & Related papers (2024-11-05T09:08:46Z) - Multi-Source Collaborative Gradient Discrepancy Minimization for
Federated Domain Generalization [27.171533040583117]
Federated Domain Generalization aims to learn a domain-invariant model from multiple decentralized source domains for deployment on unseen target domain.
We propose a Multi-source Collaborative Gradient Discrepancy Minimization (MCGDM) method for federated domain generalization.
arXiv Detail & Related papers (2024-01-05T01:21:37Z) - MetaDefa: Meta-learning based on Domain Enhancement and Feature
Alignment for Single Domain Generalization [12.095382249996032]
A novel meta-learning method based on domain enhancement and feature alignment (MetaDefa) is proposed to improve the model generalization performance.
In this paper, domain-invariant features can be fully explored by focusing on similar target regions between source and augmented domains feature space.
Extensive experiments on two publicly available datasets show that MetaDefa has significant generalization performance advantages in unknown multiple target domains.
arXiv Detail & Related papers (2023-11-27T15:13:02Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain
Adaptive Semantic Segmentation [102.42638795864178]
We propose a principled meta-learning based approach to OCDA for semantic segmentation.
We cluster target domain into multiple sub-target domains by image styles, extracted in an unsupervised manner.
A meta-learner is thereafter deployed to learn to fuse sub-target domain-specific predictions, conditioned upon the style code.
We learn to online update the model by model-agnostic meta-learning (MAML) algorithm, thus to further improve generalization.
arXiv Detail & Related papers (2020-12-15T13:21:54Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
We propose a Learning to Combine for Multi-Source Domain Adaptation (LtC-MSDA) framework.
In the nutshell, a knowledge graph is constructed on the prototypes of various domains to realize the information propagation among semantically adjacent representations.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-07-17T07:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.