論文の概要: Speaker Emotion Recognition: Leveraging Self-Supervised Models for Feature Extraction Using Wav2Vec2 and HuBERT
- arxiv url: http://arxiv.org/abs/2411.02964v1
- Date: Tue, 05 Nov 2024 10:06:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:31.371161
- Title: Speaker Emotion Recognition: Leveraging Self-Supervised Models for Feature Extraction Using Wav2Vec2 and HuBERT
- Title(参考訳): 話者感情認識: Wav2Vec2 と HuBERT を用いた自己監督モデルによる特徴抽出
- Authors: Pourya Jafarzadeh, Amir Mohammad Rostami, Padideh Choobdar,
- Abstract要約: 本研究では, 自己教師型トランスフォーマーモデルであるWav2Vec2とHuBERTを用いて, 話者の感情を音声から判断する。
提案手法は、RAVDESS、SHEMO、SAVEE、AESDD、Emo-DBを含む計算可能なデータセットに基づいて評価される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Speech is the most natural way of expressing ourselves as humans. Identifying emotion from speech is a nontrivial task due to the ambiguous definition of emotion itself. Speaker Emotion Recognition (SER) is essential for understanding human emotional behavior. The SER task is challenging due to the variety of speakers, background noise, complexity of emotions, and speaking styles. It has many applications in education, healthcare, customer service, and Human-Computer Interaction (HCI). Previously, conventional machine learning methods such as SVM, HMM, and KNN have been used for the SER task. In recent years, deep learning methods have become popular, with convolutional neural networks and recurrent neural networks being used for SER tasks. The input of these methods is mostly spectrograms and hand-crafted features. In this work, we study the use of self-supervised transformer-based models, Wav2Vec2 and HuBERT, to determine the emotion of speakers from their voice. The models automatically extract features from raw audio signals, which are then used for the classification task. The proposed solution is evaluated on reputable datasets, including RAVDESS, SHEMO, SAVEE, AESDD, and Emo-DB. The results show the effectiveness of the proposed method on different datasets. Moreover, the model has been used for real-world applications like call center conversations, and the results demonstrate that the model accurately predicts emotions.
- Abstract(参考訳): スピーチは、自分自身を人間として表現する最も自然な方法です。
音声から感情を識別することは、感情自体の曖昧な定義のため、非自明な作業である。
話者感情認識(SER)は、人間の感情行動を理解するのに不可欠である。
SERタスクは、さまざまな話者、バックグラウンドノイズ、感情の複雑さ、話し方によって困難である。
教育、医療、カスタマーサービス、ヒューマン・コンピュータ・インタラクション(HCI)に多くの応用がある。
これまで、SERタスクにはSVM、HMM、KNNといった従来の機械学習手法が用いられてきた。
近年,SERタスクに畳み込みニューラルネットワークやリカレントニューラルネットワークなど,ディープラーニング手法が普及している。
これらの手法の入力は主に分光器と手作りの特徴である。
本研究では,自己教師型トランスフォーマーモデルであるWav2Vec2とHuBERTを用いて,音声から話者の感情を判断する。
モデルは、生音声信号から自動的に特徴を抽出し、それを分類タスクに使用する。
提案手法は、RAVDESS、SHEMO、SAVEE、AESDD、Emo-DBを含む計算可能なデータセットに基づいて評価される。
その結果,提案手法の異なるデータセットに対する有効性を示した。
さらに、このモデルはコールセンターの会話のような現実世界のアプリケーションに使われており、結果はモデルが感情を正確に予測していることを示している。
関連論文リスト
- SIFToM: Robust Spoken Instruction Following through Theory of Mind [51.326266354164716]
本稿では,認知にインスパイアされた音声指導モデルであるSIFToMを提案し,多様な音声条件下でロボットが人間の指示を実践的に追従できるようにする。
結果から,SIFToMモデルは現状の音声モデルや言語モデルよりも優れており,課題に追従する音声命令に対する人間レベルの精度に近づいていることがわかった。
論文 参考訳(メタデータ) (2024-09-17T02:36:10Z) - Speech Emotion Recognition Using CNN and Its Use Case in Digital Healthcare [0.0]
人間の感情と感情状態を音声から識別するプロセスは、音声感情認識(SER)として知られている。
私の研究は、畳み込みニューラルネットワーク(CNN)を使って、音声録音と感情を区別し、異なる感情の範囲に応じてラベル付けすることを目指しています。
私は、機械学習手法を用いて、供給された音声ファイルから感情を識別する機械学習モデルを開発した。
論文 参考訳(メタデータ) (2024-06-15T21:33:03Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - EmoDiarize: Speaker Diarization and Emotion Identification from Speech
Signals using Convolutional Neural Networks [0.0]
本研究では,音声認識における深層学習技術の統合について検討する。
既存の話者ダイアリゼーションパイプラインと、畳み込みニューラルネットワーク(CNN)上に構築された感情識別モデルを組み合わせたフレームワークを導入する。
提案モデルでは,63%の非重み付き精度が得られ,音声信号中の感情状態を正確に同定する上で,顕著な効率性を示した。
論文 参考訳(メタデータ) (2023-10-19T16:02:53Z) - Unsupervised Representations Improve Supervised Learning in Speech
Emotion Recognition [1.3812010983144798]
本研究では,小さな音声セグメントからの感情認識のための自己教師付き特徴抽出と教師付き分類を統合した革新的なアプローチを提案する。
事前処理では,Wav2Vecモデルに基づく自己教師付き特徴抽出器を用いて音声データから音響特徴を抽出した。
次に、前処理ステップの出力特徴マップを、カスタム設計の畳み込みニューラルネットワーク(CNN)ベースのモデルに入力し、感情分類を行う。
論文 参考訳(メタデータ) (2023-09-22T08:54:06Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
本研究では,データ駆動型深層学習モデル,すなわちSenseNetを提案する。
実験の結果,提案した強度ネットの予測感情強度は,目視と目視の両方の真理値と高い相関性を示した。
論文 参考訳(メタデータ) (2022-06-15T01:25:32Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Multimodal Emotion Recognition with High-level Speech and Text Features [8.141157362639182]
本稿では,wav2vec 2.0音声特徴量に対する感情認識を実現するために,新しいクロス表現音声モデルを提案する。
また、Transformerベースのモデルを用いて抽出したテキスト特徴から感情を認識するために、CNNベースのモデルをトレーニングする。
本手法は,4クラス分類問題においてIEMOCAPデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-29T07:08:40Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
音声ファイルを含む9,724のサンプルとその感情ラベル付きアノテーションを含むマンダリン感情音声データセットを導入,公開する。
入力として追加の参照音声を必要とするこれらのモデルとは異なり、我々のモデルは入力テキストから直接感情ラベルを予測し、感情埋め込みに基づいてより表現力のある音声を生成することができる。
実験段階では、まず感情分類タスクによってデータセットの有効性を検証し、次に提案したデータセットに基づいてモデルをトレーニングし、一連の主観評価を行う。
論文 参考訳(メタデータ) (2021-06-17T08:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。