論文の概要: Growing a Tail: Increasing Output Diversity in Large Language Models
- arxiv url: http://arxiv.org/abs/2411.02989v1
- Date: Tue, 05 Nov 2024 10:52:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:52.708370
- Title: Growing a Tail: Increasing Output Diversity in Large Language Models
- Title(参考訳): テイルの成長: 大規模言語モデルにおける出力の多様性の向上
- Authors: Michal Shur-Ofry, Bar Horowitz-Amsalem, Adir Rahamim, Yonatan Belinkov,
- Abstract要約: そこで本研究では,様々なモデルに対する質問に対する回答の多様性について検討し,それらと人間の回答を比較した。
この結果から, モデル出力は人間に比べて狭く, 主流の「世界観」を反映し, 高度に集中していることが示唆された。
文化多様性の保全を目指すAI政策におけるこれらの知見の意義について論じる。
- 参考スコア(独自算出の注目度): 32.25501339368112
- License:
- Abstract: How diverse are the outputs of large language models when diversity is desired? We examine the diversity of responses of various models to questions with multiple possible answers, comparing them with human responses. Our findings suggest that models' outputs are highly concentrated, reflecting a narrow, mainstream 'worldview', in comparison to humans, whose responses exhibit a much longer-tail. We examine three ways to increase models' output diversity: 1) increasing generation randomness via temperature sampling; 2) prompting models to answer from diverse perspectives; 3) aggregating outputs from several models. A combination of these measures significantly increases models' output diversity, reaching that of humans. We discuss implications of these findings for AI policy that wishes to preserve cultural diversity, an essential building block of a democratic social fabric.
- Abstract(参考訳): 多様性を求める場合、大規模な言語モデルのアウトプットはどの程度多様性があるか?
様々なモデルの応答の多様性を複数の可能な質問に対して検討し、それらと人間の応答を比較した。
以上の結果から, モデル出力は, より長い尾を持つ人間に比べて, 狭く主流の「世界観」を反映し, 高度に集中していることが示唆された。
モデル出力の多様性を高めるための3つの方法を検討する。
1) 温度サンプリングによる生成ランダム性の増加
2) 多様な視点からモデルに回答するよう促す。
3)複数のモデルからの出力を集約する。
これらの指標を組み合わせることで、モデルの出力の多様性が大幅に向上し、人間のものまで達する。
本稿では, 文化的多様性の維持を目指すAI政策におけるこれらの知見の意義について論じる。
関連論文リスト
- One fish, two fish, but not the whole sea: Alignment reduces language models' conceptual diversity [2.5975241792179378]
研究者は大規模言語モデル(LLM)を人間の行動研究の代替として使用することを提案した。
トレーニング後のアライメント(RLHFまたはRLAIF)がモデルの内部多様性に影響を及ぼすかどうかが議論されている。
我々は、シミュレーションされた個体の内部変動と集団レベルの変動を関連づけることで、合成合成LLMの「人口」の概念的多様性を測定する新しい方法を用いる。
論文 参考訳(メタデータ) (2024-11-07T04:38:58Z) - GRADE: Quantifying Sample Diversity in Text-to-Image Models [66.12068246962762]
本稿では,サンプルの多様性を定量化する手法であるGRADE: Granular Attribute Diversity Evaluationを提案する。
400のコンセプト属性ペアを用いて12のT2Iモデルの全体的な多様性を測定し、すべてのモデルが限定的な変動を示すことを示した。
我々の研究は、サンプルの多様性を測定するための現代的で意味論的に駆動されたアプローチを提案し、T2Iモデルによる出力の驚くべき均一性を強調している。
論文 参考訳(メタデータ) (2024-10-29T23:10:28Z) - The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention [61.80236015147771]
我々は多様性の介入とT2Iモデルにおける人口統計学的事実性とのトレードオフを定量化する。
DoFaiRの実験では、多様性指向の指示によって、性別や人種の異なる集団の数が増加することが明らかになった。
本研究では,歴史における世代ごとのジェンダーや人種構成について,言語化された事実情報を反映したFact-Augmented Intervention (FAI)を提案する。
論文 参考訳(メタデータ) (2024-06-29T09:09:42Z) - Brainstorming Brings Power to Large Language Models of Knowledge Reasoning [17.14501985068287]
大規模言語モデル(LLM)は、言語生成、テキスト理解、知識推論において驚くべき能力を示した。
近年の研究では、多モデルコラボレーションの導入により、幅広いタスクにおけるモデルの推論能力が向上している。
本稿では,インプットに基づくマルチモデルブレインストーミングを提案する。ブレインストーミングのためのグループに,複数の推論と再推論のラウンドを組み込んだ結果,コンセンサスな回答が得られた。
論文 参考訳(メタデータ) (2024-06-02T14:47:14Z) - Forcing Diffuse Distributions out of Language Models [70.28345569190388]
ユーザ命令に従うように特別に訓練されているにもかかわらず、今日の命令付き言語モデルは、ランダムな出力を生成するように指示された場合、性能が良くない。
本稿では,言語モデルに有効な結果に対して拡散した分布を出力することを奨励する微調整手法を提案する。
論文 参考訳(メタデータ) (2024-04-16T19:17:23Z) - Explaining latent representations of generative models with large multimodal models [5.9908087713968925]
データ生成潜在因子の解釈可能な表現を学習することは、人工知能の発展にとって重要なトピックである。
大規模マルチモーダルモデルを用いた生成モデルにおいて,各潜伏変数を包括的に記述するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T19:28:33Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - Improving Diversity of Demographic Representation in Large Language
Models via Collective-Critiques and Self-Voting [19.79214899011072]
本稿では,生成的大言語モデルにおける表現の多様性を形式化する。
評価データセットを提示し、人や文化軸に沿って生成された反応の多様性を測定する指標を提案する。
LLMは多様性の概念を理解し、その目標に対して自身の反応を推論し、批判することができる。
論文 参考訳(メタデータ) (2023-10-25T10:17:17Z) - Out of One, Many: Using Language Models to Simulate Human Samples [3.278541277919869]
このようなツール(GPT-3言語モデル)の「アルゴリズムバイアス」は、粒度と人口統計学的に相関していることを示す。
我々は、実際の人間の参加者から何千もの社会デマトグラフィーのバックストリーにモデルを条件付けることで「シリコンサンプル」を作成します。
論文 参考訳(メタデータ) (2022-09-14T19:53:32Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
機能エンジニアリングなしで、どの発話やトークンが退屈であるかを動的に認識する対話モデルを構築します。
最初のモデルMinAvgOutは、各バッチの出力分布を通して、ダイバーシティスコアを直接最大化する。
第2のモデルであるラベルファインチューニング(LFT)は、多様性スコアによって連続的にスケールされたラベルをソースシーケンスにプリペイドし、多様性レベルを制御する。
3つ目のモデルであるRLは強化学習を採用し、多様性スコアを報奨信号として扱う。
論文 参考訳(メタデータ) (2020-01-15T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。