Neural Networks and (Virtual) Extended Formulations
- URL: http://arxiv.org/abs/2411.03006v2
- Date: Tue, 11 Feb 2025 14:19:32 GMT
- Title: Neural Networks and (Virtual) Extended Formulations
- Authors: Christoph Hertrich, Georg Loho,
- Abstract summary: We prove lower bounds on the size of neural networks that optimize over $P$.
We show that $mathrmxc(P)$ is a lower bound on the size of any monotone or input neural network that solves the linear optimization problem over $P$.
- Score: 5.762677915745415
- License:
- Abstract: Neural networks with piecewise linear activation functions, such as rectified linear units (ReLU) or maxout, are among the most fundamental models in modern machine learning. We make a step towards proving lower bounds on the size of such neural networks by linking their representative capabilities to the notion of the extension complexity $\mathrm{xc}(P)$ of a polytope $P$. This is a well-studied quantity in combinatorial optimization and polyhedral geometry describing the number of inequalities needed to model $P$ as a linear program. We show that $\mathrm{xc}(P)$ is a lower bound on the size of any monotone or input-convex neural network that solves the linear optimization problem over $P$. This implies exponential lower bounds on such neural networks for a variety of problems, including the polynomially solvable maximum weight matching problem. In an attempt to prove similar bounds also for general neural networks, we introduce the notion of virtual extension complexity $\mathrm{vxc}(P)$, which generalizes $\mathrm{xc}(P)$ and describes the number of inequalities needed to represent the linear optimization problem over $P$ as a difference of two linear programs. We prove that $\mathrm{vxc}(P)$ is a lower bound on the size of any neural network that optimizes over $P$. While it remains an open question to derive useful lower bounds on $\mathrm{vxc}(P)$, we argue that this quantity deserves to be studied independently from neural networks by proving that one can efficiently optimize over a polytope $P$ using a small virtual extended formulation.
Related papers
- Deep Neural Networks: Multi-Classification and Universal Approximation [0.0]
We demonstrate that a ReLU deep neural network with a width of $2$ and a depth of $2N+4M-1$ layers can achieve finite sample memorization for any dataset comprising $N$ elements.
We also provide depth estimates for approximating $W1,p$ functions and width estimates for approximating $Lp(Omega;mathbbRm)$ for $mgeq1$.
arXiv Detail & Related papers (2024-09-10T14:31:21Z) - Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
We study the computational complexity of learning a target function $f_*:mathbbRdtomathbbR$ with additive structure.
We prove that a large subset of $f_*$ can be efficiently learned by gradient training of a two-layer neural network.
arXiv Detail & Related papers (2024-06-17T17:59:17Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Shallow neural network representation of polynomials [91.3755431537592]
We show that $d$-variables of degreeR$ can be represented on $[0,1]d$ as shallow neural networks of width $d+1+sum_r=2Rbinomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1[binomr+d-1d-1d-1d-1[binomr+d-1d-1d-1d-1
arXiv Detail & Related papers (2022-08-17T08:14:52Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - On the Provable Generalization of Recurrent Neural Networks [7.115768009778412]
We analyze the training and generalization for Recurrent Neural Network (RNN)
We prove a generalization error bound to learn functions without normalized conditions.
We also prove a novel result to learn N-variables functions of input sequence.
arXiv Detail & Related papers (2021-09-29T02:06:33Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation [5.35599092568615]
This paper studies the power of artificial neural networks with rectified linear units.
We show that two fundamental optimization problems can be solved with neural networks of size $mathcalO(m2n2)$.
arXiv Detail & Related papers (2021-02-12T17:23:34Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
We consider the dynamic of descent for learning a two-layer neural network.
We show that an over-parametrized two-layer neural network can provably learn with gradient loss at most ground with Tangent samples.
arXiv Detail & Related papers (2020-07-09T07:09:28Z) - On the Modularity of Hypernetworks [103.1147622394852]
We show that for a structured target function, the overall number of trainable parameters in a hypernetwork is smaller by orders of magnitude than the number of trainable parameters of a standard neural network and an embedding method.
arXiv Detail & Related papers (2020-02-23T22:51:52Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
We develop a corrective mechanism for neural network approximation.
We show that two-layer neural networks in the random features regime (RF) can memorize arbitrary labels.
We also consider three-layer neural networks and show that the corrective mechanism yields faster representation rates for smooth radial functions.
arXiv Detail & Related papers (2020-02-01T20:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.