論文の概要: Flashy Backdoor: Real-world Environment Backdoor Attack on SNNs with DVS Cameras
- arxiv url: http://arxiv.org/abs/2411.03022v1
- Date: Tue, 05 Nov 2024 11:44:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:27.990797
- Title: Flashy Backdoor: Real-world Environment Backdoor Attack on SNNs with DVS Cameras
- Title(参考訳): 懐かしいバックドア:DVSカメラ搭載のSNNで現実世界のバックドア攻撃
- Authors: Roberto Riaño, Gorka Abad, Stjepan Picek, Aitor Urbieta,
- Abstract要約: スパイキングニューラルネットワーク(SNN)を用いた実環境におけるバックドアアタックの初評価について述べる。
本稿では,SNNに新たな3つのバックドア攻撃手法,すなわちFramed,Strobing,F Flashy Backdoorを提案する。
本研究は, バックドア攻撃に対するSNNベースのシステムのセキュリティと, 現実のシナリオにおける安全性を確保するために, さらなる研究が必要であることを示すものである。
- 参考スコア(独自算出の注目度): 11.658496836117907
- License:
- Abstract: While security vulnerabilities in traditional Deep Neural Networks (DNNs) have been extensively studied, the susceptibility of Spiking Neural Networks (SNNs) to adversarial attacks remains mostly underexplored. Until now, the mechanisms to inject backdoors into SNN models have been limited to digital scenarios; thus, we present the first evaluation of backdoor attacks in real-world environments. We begin by assessing the applicability of existing digital backdoor attacks and identifying their limitations for deployment in physical environments. To address each of the found limitations, we present three novel backdoor attack methods on SNNs, i.e., Framed, Strobing, and Flashy Backdoor. We also assess the effectiveness of traditional backdoor procedures and defenses adapted for SNNs, such as pruning, fine-tuning, and fine-pruning. The results show that while these procedures and defenses can mitigate some attacks, they often fail against stronger methods like Flashy Backdoor or sacrifice too much clean accuracy, rendering the models unusable. Overall, all our methods can achieve up to a 100% Attack Success Rate while maintaining high clean accuracy in every tested dataset. Additionally, we evaluate the stealthiness of the triggers with commonly used metrics, finding them highly stealthy. Thus, we propose new alternatives more suited for identifying poisoned samples in these scenarios. Our results show that further research is needed to ensure the security of SNN-based systems against backdoor attacks and their safe application in real-world scenarios. The code, experiments, and results are available in our repository.
- Abstract(参考訳): 従来のディープニューラルネットワーク(DNN)のセキュリティ脆弱性は広く研究されているが、スパイキングニューラルネットワーク(SNN)による敵の攻撃に対する感受性はほとんど調査されていない。
これまで,SNNモデルにバックドアを注入する機構はディジタルシナリオに限られていたため,実環境におけるバックドア攻撃の初評価を行った。
まず、既存のデジタルバックドア攻撃の適用性を評価し、物理的な環境への展開の限界を特定することから始める。
それぞれの制限に対処するため、SNNにはFramed、Strobing、Flashy Backdoorという3つの新しいバックドアアタック手法を提案する。
また, SNNに適合する従来のバックドア・プロシージャやディフェンス, 微調整, 微調整などの有効性についても検討した。
その結果、これらのプロシージャとディフェンスはいくつかの攻撃を軽減できるが、Flashy Backdoorのような強力な手法に失敗するか、あまりにクリーンな精度を犠牲にし、モデルを使用不能にすることが多い。
全体として、テストされたデータセット毎に高いクリーンな精度を維持しながら、すべてのメソッドが100%のアタック成功率を達成することができる。
さらに、一般的なメトリクスでトリガーのステルス性を評価し、高いステルス性を見出した。
そこで本研究では,これらのシナリオで有毒な試料を同定するのに適した新しい方法を提案する。
本研究は, バックドア攻撃に対するSNNベースのシステムのセキュリティと, 現実のシナリオにおける安全性を確保するために, さらなる研究が必要であることを示すものである。
コード、実験、結果は、私たちのリポジトリで利用可能です。
関連論文リスト
- Data Poisoning-based Backdoor Attack Framework against Supervised Learning Rules of Spiking Neural Networks [3.9444202574850755]
スパイキングニューラルネットワーク(SNN)は、低エネルギー消費と高ロバスト性で知られている。
本稿では,バックドア攻撃時の教師付き学習規則により訓練されたSNNの堅牢性について検討する。
論文 参考訳(メタデータ) (2024-09-24T02:15:19Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアの敵は、敵が特定したトリガーパターンによって活性化される隠れたバックドアを注入する。
最近の研究によると、既存の攻撃のほとんどは現実世界で失敗した。
論文 参考訳(メタデータ) (2022-11-02T16:03:43Z) - Towards Practical Deployment-Stage Backdoor Attack on Deep Neural
Networks [5.231607386266116]
ディープラーニングモデルに対するデプロイステージバックドア攻撃の現実的な脅威について検討する。
バックドアインジェクションのための最初のグレーボックスと物理的に実現可能な重み攻撃アルゴリズムを提案する。
本研究は,攻撃アルゴリズムの有効性と実用性を示すものである。
論文 参考訳(メタデータ) (2021-11-25T08:25:27Z) - AEVA: Black-box Backdoor Detection Using Adversarial Extreme Value
Analysis [23.184335982913325]
ブラックボックスのハードラベルバックドア検出問題に対処する。
本研究では, バックドア検出の目的は, 逆方向の目的によって拘束されていることを示す。
ブラックボックスニューラルネットワークのバックドア検出のための対向的極値解析を提案する。
論文 参考訳(メタデータ) (2021-10-28T04:36:48Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - Light Can Hack Your Face! Black-box Backdoor Attack on Face Recognition
Systems [0.0]
顔認識システムにおけるブラックボックスバックドア攻撃手法を提案する。
バックドアトリガは極めて効果的であり、攻撃成功率は最大で88%である。
本研究は,既存の顔認識/検証技術のセキュリティ問題に注意を喚起する,新たな物理的バックドア攻撃を明らかにしたことを強調した。
論文 参考訳(メタデータ) (2020-09-15T11:50:29Z) - Defending against Backdoor Attack on Deep Neural Networks [98.45955746226106]
トレーニングデータの一部にバックドアトリガーを注入する、いわゆるテキストバックドア攻撃について検討する。
実験の結果,本手法は攻撃成功率を効果的に低減し,クリーン画像の分類精度も高いことがわかった。
論文 参考訳(メタデータ) (2020-02-26T02:03:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。