論文の概要: Interpretable Predictive Models for Healthcare via Rational Logistic Regression
- arxiv url: http://arxiv.org/abs/2411.03224v1
- Date: Tue, 05 Nov 2024 16:15:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:59:15.752537
- Title: Interpretable Predictive Models for Healthcare via Rational Logistic Regression
- Title(参考訳): 合理的ロジスティック回帰による医療予測モデル
- Authors: Thiti Suttaket, L Vivek Harsha Vardhan, Stanley Kok,
- Abstract要約: 本稿では,論理ロジスティック回帰(RLR)と呼ばれる,標準ロジスティック回帰(LR)を特別に用いた新しいモデルを開発する。
RLRは理論的基盤として有理級数を持ち、時系列データに取り組み、解釈可能なパターンを学ぶ。
実世界の臨床的タスクに関する実証的な比較は、RLRの有効性を示している。
- 参考スコア(独自算出の注目度): 1.0855602842179624
- License:
- Abstract: The healthcare sector has experienced a rapid accumulation of digital data recently, especially in the form of electronic health records (EHRs). EHRs constitute a precious resource that IS researchers could utilize for clinical applications (e.g., morbidity prediction). Deep learning seems like the obvious choice to exploit this surfeit of data. However, numerous studies have shown that deep learning does not enjoy the same kind of success on EHR data as it has in other domains; simple models like logistic regression are frequently as good as sophisticated deep learning ones. Inspired by this observation, we develop a novel model called rational logistic regression (RLR) that has standard logistic regression (LR) as its special case (and thus inherits LR's inductive bias that aligns with EHR data). RLR has rational series as its theoretical underpinnings, works on longitudinal time-series data, and learns interpretable patterns. Empirical comparisons on real-world clinical tasks demonstrate RLR's efficacy.
- Abstract(参考訳): 医療部門は最近、特に電子健康記録(EHR)の形で、デジタルデータの急速な蓄積を経験した。
EHRは、IS研究者が臨床応用に利用できる貴重な資源である(例えば、死亡予測)。
ディープラーニングは、この大量のデータを利用するための、明らかな選択のようだ。
しかし、多くの研究は、ディープラーニングが他の領域と同様の成功をおさめないことを示しており、ロジスティック回帰のような単純なモデルは、洗練された深層学習と同程度によくできている。
この観察に触発されて、我々は、標準ロジスティック回帰(LR)を特殊なケースとして持つ有理ロジスティック回帰(RLR)と呼ばれる新しいモデルを開発した(したがって、EHRデータと整合するLRの帰納バイアスを継承する)。
RLRは理論的基盤として有理級数を持ち、時系列データに取り組み、解釈可能なパターンを学ぶ。
実世界の臨床的タスクに関する実証的な比較は、RLRの有効性を示している。
関連論文リスト
- Automatic debiasing of neural networks via moment-constrained learning [0.0]
偏差推定器の回帰関数をネーティブに学習し,対象関数のサンプル平均値を取得する。
本稿では,自動脱バイアスの欠点に対処する新しいRR学習手法として,モーメント制約学習を提案する。
論文 参考訳(メタデータ) (2024-09-29T20:56:54Z) - Dynamic Data Pruning for Automatic Speech Recognition [58.95758272440217]
ASR(DDP-ASR)のダイナミック・データ・プルーニング(Dynamic Data Pruning for ASR)を導入し,音声関連データセットに特化して微細なプルーニングの粒度を提供する。
実験の結果,DDP-ASRは最大1.6倍のトレーニング時間を節約できることがわかった。
論文 参考訳(メタデータ) (2024-06-26T14:17:36Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
ランク付け学習(CLTR: Counterfactual Learning to rank)は、IRコミュニティにおいて、ログ化された大量のユーザインタラクションデータを活用してランキングモデルをトレーニングする能力において、大きな注目を集めている。
本稿では,複雑かつ多様な状況における既存のCLTRモデルのロバスト性について検討する。
その結果, DLAモデルとIPS-DCMは, PS-PBMやPSSよりも, オフラインの確率推定による堅牢性が高いことがわかった。
論文 参考訳(メタデータ) (2024-04-04T10:54:38Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - DeepVARwT: Deep Learning for a VAR Model with Trend [1.9862987223379664]
本稿では,トレンドと依存構造を最大限に推定するために,ディープラーニング手法を用いた新しい手法を提案する。
この目的のためにLong Short-Term Memory (LSTM) ネットワークが使用される。
シミュレーション研究と実データへの適用について述べる。
論文 参考訳(メタデータ) (2022-09-21T18:23:03Z) - Federated Latent Class Regression for Hierarchical Data [5.110894308882439]
フェデレートラーニング(FL)は、多くのエージェントがローカルに保存されたデータを開示することなく、グローバル機械学習モデルのトレーニングに参加することを可能にする。
本稿では,新しい確率モデルである階層潜在クラス回帰(HLCR)を提案し,フェデレートラーニング(FEDHLCR)への拡張を提案する。
我々の推論アルゴリズムはベイズ理論から派生したもので、強い収束保証と過剰適合性を提供する。実験結果から、FEDHLCRは非IIDデータセットにおいても高速収束を提供することが示された。
論文 参考訳(メタデータ) (2022-06-22T00:33:04Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Simple Recurrent Neural Networks is all we need for clinical events
predictions using EHR data [22.81278657120305]
リカレントニューラルネットワーク(Recurrent Neural Network, RNN)は、EHRに基づく臨床イベント予測モデルのための一般的なアーキテクチャである。
心不全の発症リスクと入院早期入院のリスクの2つの予測課題を用いた。
GRUやLSTMなどの単純なゲート付きRNNモデルでは,ベイズ最適化を適切に調整した場合に,しばしば競合する結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-10-03T13:07:23Z) - Categorical EHR Imputation with Generative Adversarial Nets [11.171712535005357]
本稿では,データ計算のためのGANに関する従来の研究を基にした,シンプルで効果的な手法を提案する。
従来のデータ計算手法に比べて予測精度が大幅に向上していることを示す。
論文 参考訳(メタデータ) (2021-08-03T18:50:26Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。