Neural Network Prediction of Strong Lensing Systems with Domain Adaptation and Uncertainty Quantification
- URL: http://arxiv.org/abs/2411.03334v1
- Date: Wed, 23 Oct 2024 19:56:57 GMT
- Title: Neural Network Prediction of Strong Lensing Systems with Domain Adaptation and Uncertainty Quantification
- Authors: Shrihan Agarwal, Aleksandra Ćiprijanović, Brian D. Nord,
- Abstract summary: Mean-variance Estimators (MVEs) are a common approach for obtaining aleatoric (data) uncertainties from a neural network prediction.
In this work, we perform the first study of the efficacy of MVEs in combination with unsupervised domain adaptation (UDA) on strong lensing data.
We find that adding UDA to MVE increases the accuracy on the target data by a factor of about two over an MVE model without UDA.
- Score: 44.99833362998488
- License:
- Abstract: Modeling strong gravitational lenses is computationally expensive for the complex data from modern and next-generation cosmic surveys. Deep learning has emerged as a promising approach for finding lenses and predicting lensing parameters, such as the Einstein radius. Mean-variance Estimators (MVEs) are a common approach for obtaining aleatoric (data) uncertainties from a neural network prediction. However, neural networks have not been demonstrated to perform well on out-of-domain target data successfully - e.g., when trained on simulated data and applied to real, observational data. In this work, we perform the first study of the efficacy of MVEs in combination with unsupervised domain adaptation (UDA) on strong lensing data. The source domain data is noiseless, and the target domain data has noise mimicking modern cosmology surveys. We find that adding UDA to MVE increases the accuracy on the target data by a factor of about two over an MVE model without UDA. Including UDA also permits much more well-calibrated aleatoric uncertainty predictions. Advancements in this approach may enable future applications of MVE models to real observational data.
Related papers
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Domain-Adaptive Neural Posterior Estimation for Strong Gravitational Lens Analysis [41.94295877935867]
We study the efficacy of Neural posterior estimation (NPE) in combination with unsupervised domain adaptation (UDA)
We find that combining UDA and NPE improves the accuracy of the inference by 1-2 orders of magnitude.
We anticipate that this combination of approaches will help enable future applications of NPE models to real observational data.
arXiv Detail & Related papers (2024-10-21T14:12:39Z) - DaFoEs: Mixing Datasets towards the generalization of vision-state
deep-learning Force Estimation in Minimally Invasive Robotic Surgery [6.55111164866752]
We present a new vision-haptic dataset (DaFoEs) with variable soft environments for the training of deep neural models.
We also present a variable encoder-decoder architecture to predict the forces done by the laparoscopic tool using single input or sequence of inputs.
arXiv Detail & Related papers (2024-01-17T14:39:55Z) - A Tale of Two Cities: Data and Configuration Variances in Robust Deep
Learning [27.498927971861068]
Deep neural networks (DNNs) are widely used in many industries such as image recognition, supply chain, medical diagnosis, and autonomous driving.
Prior work has shown the high accuracy of a DNN model does not imply high robustness because the input data and external environment are constantly changing.
arXiv Detail & Related papers (2022-11-18T03:32:53Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z) - Exploring Bayesian Surprise to Prevent Overfitting and to Predict Model
Performance in Non-Intrusive Load Monitoring [25.32973996508579]
Non-Intrusive Load Monitoring (NILM) is a field of research focused on segregating constituent electrical loads in a system based only on their aggregated signal.
We quantify the degree of surprise between the predictive distribution (termed postdictive surprise) and the transitional probabilities (termed transitional surprise)
This work provides clear evidence that a point of diminishing returns of model performance with respect to dataset size exists.
arXiv Detail & Related papers (2020-09-16T15:39:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.