Exploring Feature Importance and Explainability Towards Enhanced ML-Based DoS Detection in AI Systems
- URL: http://arxiv.org/abs/2411.03355v1
- Date: Mon, 04 Nov 2024 19:51:08 GMT
- Title: Exploring Feature Importance and Explainability Towards Enhanced ML-Based DoS Detection in AI Systems
- Authors: Paul Badu Yakubu, Evans Owusu, Lesther Santana, Mohamed Rahouti, Abdellah Chehri, Kaiqi Xiong,
- Abstract summary: Denial of Service (DoS) attacks pose a significant threat in the realm of AI systems security.
statistical and machine learning (ML)-based DoS classification and detection approaches utilize a broad range of feature selection mechanisms to select a feature subset from networking traffic datasets.
In this paper, we investigate the importance of feature selection in improving ML-based detection of DoS attacks.
- Score: 3.3150909292716477
- License:
- Abstract: Denial of Service (DoS) attacks pose a significant threat in the realm of AI systems security, causing substantial financial losses and downtime. However, AI systems' high computational demands, dynamic behavior, and data variability make monitoring and detecting DoS attacks challenging. Nowadays, statistical and machine learning (ML)-based DoS classification and detection approaches utilize a broad range of feature selection mechanisms to select a feature subset from networking traffic datasets. Feature selection is critical in enhancing the overall model performance and attack detection accuracy while reducing the training time. In this paper, we investigate the importance of feature selection in improving ML-based detection of DoS attacks. Specifically, we explore feature contribution to the overall components in DoS traffic datasets by utilizing statistical analysis and feature engineering approaches. Our experimental findings demonstrate the usefulness of the thorough statistical analysis of DoS traffic and feature engineering in understanding the behavior of the attack and identifying the best feature selection for ML-based DoS classification and detection.
Related papers
- Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
This study investigates the potential of feature attribution methods to filter out uninformative features in input data for regression problems.
We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space.
To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
arXiv Detail & Related papers (2024-09-25T09:50:51Z) - Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
We consider the problem of active learning for global sensitivity analysis of expensive black-box functions.
Since function evaluations are expensive, we use active learning to prioritize experimental resources where they yield the most value.
We propose novel active learning acquisition functions that directly target key quantities of derivative-based global sensitivity measures.
arXiv Detail & Related papers (2024-07-13T01:41:12Z) - Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks.
We propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection.
Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns.
arXiv Detail & Related papers (2024-07-08T09:18:59Z) - Characterizing out-of-distribution generalization of neural networks: application to the disordered Su-Schrieffer-Heeger model [38.79241114146971]
We show how interpretability methods can increase trust in predictions of a neural network trained to classify quantum phases.
In particular, we show that we can ensure better out-of-distribution generalization in the complex classification problem.
This work is an example of how the systematic use of interpretability methods can improve the performance of NNs in scientific problems.
arXiv Detail & Related papers (2024-06-14T13:24:32Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls
and Opportunities [50.231837687221685]
Self-supervised learning (SSL) has transformed machine learning and its many real world applications.
Unsupervised anomaly detection (AD) has also capitalized on SSL, by self-generating pseudo-anomalies.
arXiv Detail & Related papers (2023-08-28T07:55:01Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
Machine Learning (ML)-based network intrusion detection systems bring many benefits for enhancing the security posture of an organisation.
Many systems have been designed and developed in the research community, often achieving a perfect detection rate when evaluated using certain datasets.
This paper tightens the gap by evaluating the generalisability of a common feature set to different network environments and attack types.
arXiv Detail & Related papers (2021-04-15T00:44:45Z) - Supervised Feature Selection Techniques in Network Intrusion Detection:
a Critical Review [9.177695323629896]
Machine Learning techniques are becoming an invaluable support for network intrusion detection.
Dealing with the vast diversity and number of features that typically characterize data traffic is a hard problem.
By reducing the feature space and retaining only the most significant features, Feature Selection (FS) becomes a crucial pre-processing step in network management.
arXiv Detail & Related papers (2021-04-11T08:42:01Z) - An Intelligent and Time-Efficient DDoS Identification Framework for
Real-Time Enterprise Networks SAD-F: Spark Based Anomaly Detection Framework [0.5811502603310248]
We will be exploring security analytic techniques for DDoS anomaly detection using different machine learning techniques.
In this paper, we are proposing a novel approach which deals with real traffic as input to the system.
We study and compare the performance factor of our proposed framework on three different testbeds.
arXiv Detail & Related papers (2020-01-21T06:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.