Fourier Analysis of Variational Quantum Circuits for Supervised Learning
- URL: http://arxiv.org/abs/2411.03450v2
- Date: Thu, 07 Nov 2024 08:10:41 GMT
- Title: Fourier Analysis of Variational Quantum Circuits for Supervised Learning
- Authors: Marco Wiedmann, Maniraman Periyasamy, Daniel D. Scherer,
- Abstract summary: VQC can be understood through the lens of Fourier analysis.
We show that the spectrum available to that truncated Fourier sum is not entirely determined by the encoding gates of the circuit.
We show that it is possible to predict which VQC out of a given list of choices will be able to best fit the data.
- Score: 0.0
- License:
- Abstract: VQC can be understood through the lens of Fourier analysis. It is already well-known that the function space represented by any circuit architecture can be described through a truncated Fourier sum. We show that the spectrum available to that truncated Fourier sum is not entirely determined by the encoding gates of the circuit, since the variational part of the circuit can constrain certain coefficients to zero, effectively removing that frequency from the spectrum. To the best of our knowledge, we give the first description of the functional dependence of the Fourier coefficients on the variational parameters as trigonometric polynomials. This allows us to provide an algorithm which computes the exact spectrum of any given circuit and the corresponding Fourier coefficients. Finally, we demonstrate that by comparing the Fourier transform of the dataset to the available spectra, it is possible to predict which VQC out of a given list of choices will be able to best fit the data.
Related papers
- FourierMamba: Fourier Learning Integration with State Space Models for Image Deraining [71.46369218331215]
Image deraining aims to remove rain streaks from rainy images and restore clear backgrounds.
We propose a new framework termed FourierMamba, which performs image deraining with Mamba in the Fourier space.
arXiv Detail & Related papers (2024-05-29T18:58:59Z) - Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting [0.9060149007362646]
We apply 1D quantum convolution to address the task of time series forecasting.
By encoding multiple points into the quantum circuit to predict subsequent data, each point becomes a feature, transforming the problem into a multidimensional one.
arXiv Detail & Related papers (2024-04-23T01:35:07Z) - Fourier expansion in variational quantum algorithms [1.4732811715354455]
We focus on the class of variational circuits, where constant gates are Clifford gates and parameterized gates are generated by Pauli operators.
We give a classical algorithm that computes coefficients of all trigonometric monomials up to a degree $m$ in time bounded by $mathcalO(N2m)$.
arXiv Detail & Related papers (2023-04-07T18:00:01Z) - Experimental implementation of the optical fractional Fourier transform
in the time-frequency domain [0.0]
We present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system.
We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector.
arXiv Detail & Related papers (2023-03-23T14:39:52Z) - Fourier Continuation for Exact Derivative Computation in
Physics-Informed Neural Operators [53.087564562565774]
PINO is a machine learning architecture that has shown promising empirical results for learning partial differential equations.
We present an architecture that leverages Fourier continuation (FC) to apply the exact gradient method to PINO for nonperiodic problems.
arXiv Detail & Related papers (2022-11-29T06:37:54Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - 3-Qubit Circular Quantum Convolution Computation using Fourier Transform
with Illustrative Examples [3.6296396308298795]
We describe examples for calculating the 1-D circular convolution of signals represented by 3-qubit superpositions.
The frequency characteristics of many linear time-invariant systems and filters are well known.
The considered method of convolution can be used for these systems in quantum computation.
arXiv Detail & Related papers (2022-05-11T18:53:43Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
We propose a simple architecture for deep reinforcement learning by embedding inputs into a learned Fourier basis.
We show that it improves the sample efficiency of both state-based and image-based RL.
arXiv Detail & Related papers (2021-12-06T18:59:52Z) - The Fourier Loss Function [0.0]
This paper introduces a new loss function induced by the Fourier-based Metric.
We prove that the Fourier loss function is twice differentiable, and we provide the explicit formula for both its gradient and its Hessian matrix.
We apply our loss function to a multi-class classification task using MNIST, Fashion-MNIST, and CIFAR10 datasets.
arXiv Detail & Related papers (2021-02-05T03:19:44Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
We present a new family of algorithms for learning Fourier-sparse set functions.
In contrast to other work that focused on the Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms.
We demonstrate effectiveness on several real-world applications.
arXiv Detail & Related papers (2020-10-01T14:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.