Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting
- URL: http://arxiv.org/abs/2404.15377v2
- Date: Thu, 25 Apr 2024 03:46:20 GMT
- Title: Fourier Series Guided Design of Quantum Convolutional Neural Networks for Enhanced Time Series Forecasting
- Authors: Sandra Leticia Juárez Osorio, Mayra Alejandra Rivera Ruiz, Andres Mendez-Vazquez, Eduardo Rodriguez-Tello,
- Abstract summary: We apply 1D quantum convolution to address the task of time series forecasting.
By encoding multiple points into the quantum circuit to predict subsequent data, each point becomes a feature, transforming the problem into a multidimensional one.
- Score: 0.9060149007362646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we apply 1D quantum convolution to address the task of time series forecasting. By encoding multiple points into the quantum circuit to predict subsequent data, each point becomes a feature, transforming the problem into a multidimensional one. Building on theoretical foundations from prior research, which demonstrated that Variational Quantum Circuits (VQCs) can be expressed as multidimensional Fourier series, we explore the capabilities of different architectures and ansatz. This analysis considers the concepts of circuit expressibility and the presence of barren plateaus. Analyzing the problem within the framework of the Fourier series enabled the design of an architecture that incorporates data reuploading, resulting in enhanced performance. Rather than a strict requirement for the number of free parameters to exceed the degrees of freedom of the Fourier series, our findings suggest that even a limited number of parameters can produce Fourier functions of higher degrees. This highlights the remarkable expressive power of quantum circuits. This observation is also significant in reducing training times. The ansatz with greater expressibility and number of non-zero Fourier coefficients consistently delivers favorable results across different scenarios, with performance metrics improving as the number of qubits increases.
Related papers
- Fourier Analysis of Variational Quantum Circuits for Supervised Learning [0.0]
VQC can be understood through the lens of Fourier analysis.
We show that the spectrum available to that truncated Fourier sum is not entirely determined by the encoding gates of the circuit.
We show that it is possible to predict which VQC out of a given list of choices will be able to best fit the data.
arXiv Detail & Related papers (2024-11-05T19:07:26Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Constrained and Vanishing Expressivity of Quantum Fourier Models [2.7746258981078196]
We show a new correlation between the Fourier coefficients of the quantum model and its encoding gates.
We also show a phenomenon of vanishing expressivity in certain settings.
These two behaviors imply novel forms of constraints which limit the expressivity of PQCs.
arXiv Detail & Related papers (2024-03-14T14:05:24Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Fourier expansion in variational quantum algorithms [1.4732811715354455]
We focus on the class of variational circuits, where constant gates are Clifford gates and parameterized gates are generated by Pauli operators.
We give a classical algorithm that computes coefficients of all trigonometric monomials up to a degree $m$ in time bounded by $mathcalO(N2m)$.
arXiv Detail & Related papers (2023-04-07T18:00:01Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Deep Fourier Up-Sampling [100.59885545206744]
Up-sampling in the Fourier domain is more challenging as it does not follow such a local property.
We propose a theoretically sound Deep Fourier Up-Sampling (FourierUp) to solve these issues.
arXiv Detail & Related papers (2022-10-11T06:17:31Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization.
We formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks.
arXiv Detail & Related papers (2022-05-16T17:58:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases [73.53227696624306]
We present a new family of algorithms for learning Fourier-sparse set functions.
In contrast to other work that focused on the Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms.
We demonstrate effectiveness on several real-world applications.
arXiv Detail & Related papers (2020-10-01T14:31:59Z) - The effect of data encoding on the expressive power of variational
quantum machine learning models [0.7734726150561088]
Quantum computers can be used for supervised learning by treating parametrised quantum circuits as models that map data inputs to predictions.
Here we investigate how the strategy with which data is encoded into the model influences the expressive power of parametrised quantum circuits as function approximators.
arXiv Detail & Related papers (2020-08-19T18:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.