論文の概要: LLM Generated Distribution-Based Prediction of US Electoral Results, Part I
- arxiv url: http://arxiv.org/abs/2411.03486v1
- Date: Tue, 05 Nov 2024 20:10:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:24:46.780283
- Title: LLM Generated Distribution-Based Prediction of US Electoral Results, Part I
- Title(参考訳): LLMによる米国の選挙結果の分布予測(その1)
- Authors: Caleb Bradshaw, Caelen Miller, Sean Warnick,
- Abstract要約: 本稿では,Large Language Models (LLM) を予測ツールとして利用するための新しいアプローチである分布ベース予測を紹介する。
我々は、近年のアメリカ合衆国大統領選挙の文脈において、分布に基づく予測の使用を実演する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper introduces distribution-based prediction, a novel approach to using Large Language Models (LLMs) as predictive tools by interpreting output token probabilities as distributions representing the models' learned representation of the world. This distribution-based nature offers an alternative perspective for analyzing algorithmic fidelity, complementing the approach used in silicon sampling. We demonstrate the use of distribution-based prediction in the context of recent United States presidential election, showing that this method can be used to determine task specific bias, prompt noise, and algorithmic fidelity. This approach has significant implications for assessing the reliability and increasing transparency of LLM-based predictions across various domains.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) を予測ツールとして利用するための新しい手法である分布に基づく予測を紹介し,そのモデルが学習した世界表現を表す分布として出力トークン確率を解釈する。
この分布に基づく性質は、シリコンサンプリングで使用されるアプローチを補完し、アルゴリズムの忠実度を分析するための代替の視点を提供する。
本稿では,近年のアメリカ合衆国大統領選挙の文脈における分布に基づく予測の利用を実証し,この手法がタスク固有の偏り,ノイズの促進,アルゴリズム的忠実度を決定するのに有効であることを示す。
このアプローチは、様々な領域にわたるLSMベースの予測の信頼性を評価し、透明性を高めるために重要な意味を持つ。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - A Distributional Analogue to the Successor Representation [54.99439648059807]
本稿では,分散強化学習のための新しい手法を提案する。
学習プロセスにおける遷移構造と報酬のクリーンな分離を解明する。
実例として,ゼロショットリスクに敏感な政策評価が可能であることを示す。
論文 参考訳(メタデータ) (2024-02-13T15:35:24Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - Domain Generalization with Small Data [27.040070085669086]
我々は,各データポイントを確率的埋め込みにマッピングすることで,確率的フレームワークに基づくドメイン不変表現を学習する。
提案手法は,分布上のテクスト分布の測定値(大域的視点アライメント)と分布に基づくコントラスト的セマンティックアライメント(コントラスト的セマンティックアライメント)を結合することができる。
論文 参考訳(メタデータ) (2024-02-09T02:59:08Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Distributionally Robust Machine Learning with Multi-source Data [6.383451076043423]
対象分布のクラスに対する説明分散に関する逆報酬を最適化するために,群分布に頑健な予測モデルを導入する。
従来の経験的リスク最小化と比較して,提案した頑健な予測モデルでは,分布シフトを伴う対象集団の予測精度が向上する。
ランダムな森林とニューラルネットワークをベースラーニングアルゴリズムとして用いたシミュレーションおよび実データに対して,提案したグループ分散ロバストな手法の性能を示す。
論文 参考訳(メタデータ) (2023-09-05T13:19:40Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
本稿では,OoD(Out-of-Distribution)予測のためのポータブル分布シフト変換アルゴリズムを提案する。
提案手法は,OoDアルゴリズムを広範囲に接続した場合に,一般的な性能向上をもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-14T08:00:49Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
本稿では,スパース構造多変量ガウシアンを用いて,高密度画像予測タスクのための閉形式近似器を提案する。
正規分布における予測の不確かさと構造的相関を、サンプリング単独で暗黙的にではなく、明示的に捉える。
単分子深度推定におけるアプローチの利点を実証し,本手法の利点が同等の定量的性能で得られることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:34:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。