An Application-Agnostic Automatic Target Recognition System Using Vision Language Models
- URL: http://arxiv.org/abs/2411.03491v1
- Date: Tue, 05 Nov 2024 20:16:15 GMT
- Title: An Application-Agnostic Automatic Target Recognition System Using Vision Language Models
- Authors: Anthony Palladino, Dana Gajewski, Abigail Aronica, Patryk Deptula, Alexander Hamme, Seiyoung C. Lee, Jeff Muri, Todd Nelling, Michael A. Riley, Brian Wong, Margaret Duff,
- Abstract summary: We present a novel Automatic Target Recognition (ATR) system using open-vocabulary object detection and classification models.
A primary advantage of this approach is that target classes can be defined just before runtime by a non-technical end user.
Nuances in the desired targets can be expressed in natural language, which is useful for unique targets with little or no training data.
- Score: 32.858386851006316
- License:
- Abstract: We present a novel Automatic Target Recognition (ATR) system using open-vocabulary object detection and classification models. A primary advantage of this approach is that target classes can be defined just before runtime by a non-technical end user, using either a few natural language text descriptions of the target, or a few image exemplars, or both. Nuances in the desired targets can be expressed in natural language, which is useful for unique targets with little or no training data. We also implemented a novel combination of several techniques to improve performance, such as leveraging the additional information in the sequence of overlapping frames to perform tubelet identification (i.e., sequential bounding box matching), bounding box re-scoring, and tubelet linking. Additionally, we developed a technique to visualize the aggregate output of many overlapping frames as a mosaic of the area scanned during the aerial surveillance or reconnaissance, and a kernel density estimate (or heatmap) of the detected targets. We initially applied this ATR system to the use case of detecting and clearing unexploded ordinance on airfield runways and we are currently extending our research to other real-world applications.
Related papers
- Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
We propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction.
To address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism.
Our method achieves superior results compared to previous approaches and can be further extended to multi-action videos.
arXiv Detail & Related papers (2024-08-28T17:59:05Z) - Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection [37.57355457749918]
We introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP.
Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction.
Experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings.
arXiv Detail & Related papers (2024-08-05T14:05:25Z) - Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection [58.228940066769596]
We introduce a Dual-Image Enhanced CLIP approach, leveraging a joint vision-language scoring system.
Our methods process pairs of images, utilizing each as a visual reference for the other, thereby enriching the inference process with visual context.
Our approach significantly exploits the potential of vision-language joint anomaly detection and demonstrates comparable performance with current SOTA methods across various datasets.
arXiv Detail & Related papers (2024-05-08T03:13:20Z) - Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery [17.156864650143678]
We develop a few-shot object detector based on a traditional two-stage architecture.
A large-scale pre-trained model is used to build class-reference embeddings or prototypes.
We perform evaluations on two remote sensing datasets containing challenging and rare objects.
arXiv Detail & Related papers (2024-03-08T15:20:27Z) - Simple Image-level Classification Improves Open-vocabulary Object
Detection [27.131298903486474]
Open-Vocabulary Object Detection (OVOD) aims to detect novel objects beyond a given set of base categories on which the detection model is trained.
Recent OVOD methods focus on adapting the image-level pre-trained vision-language models (VLMs), such as CLIP, to a region-level object detection task via, eg., region-level knowledge distillation, regional prompt learning, or region-text pre-training.
These methods have demonstrated remarkable performance in recognizing regional visual concepts, but they are weak in exploiting the VLMs' powerful global scene understanding ability learned from the billion-scale
arXiv Detail & Related papers (2023-12-16T13:06:15Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
Single Domain Generalization tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain.
We propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts.
We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss.
arXiv Detail & Related papers (2023-01-13T12:01:18Z) - On-the-fly Object Detection using StyleGAN with CLIP Guidance [28.25720358443378]
We present a fully automated framework for building object detectors on satellite imagery without requiring any human intervention.
We achieve this by leveraging the combined power of modern generative models (e.g., StyleGAN) and recent advances in multi-modal learning (e.g., CLIP)
arXiv Detail & Related papers (2022-10-30T04:43:01Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
Building robust and generic object detection frameworks requires scaling to larger label spaces and bigger training datasets.
We propose a novel method that leverages the rich semantics available in recent vision and language models to localize and classify objects in unlabeled images.
We demonstrate the value of the generated pseudo labels in two specific tasks, open-vocabulary detection and semi-supervised object detection.
arXiv Detail & Related papers (2022-07-18T21:47:15Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
We propose a detection strategy to highlight adversarial support sets.
We make use of feature preserving autoencoder filtering and also the concept of self-similarity of a support set to perform this detection.
Our method is attack-agnostic and also the first to explore detection for few-shot classifiers to the best of our knowledge.
arXiv Detail & Related papers (2020-12-09T14:13:41Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.