論文の概要: Exploring the Potentials and Challenges of Using Large Language Models for the Analysis of Transcriptional Regulation of Long Non-coding RNAs
- arxiv url: http://arxiv.org/abs/2411.03522v1
- Date: Tue, 05 Nov 2024 21:57:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:24:04.991264
- Title: Exploring the Potentials and Challenges of Using Large Language Models for the Analysis of Transcriptional Regulation of Long Non-coding RNAs
- Title(参考訳): 長鎖非コードRNAの転写制御解析における大規模言語モデルの可能性と課題
- Authors: Wei Wang, Zhichao Hou, Xiaorui Liu, Xinxia Peng,
- Abstract要約: 長鎖非コードRNA(lncRNA)は遺伝子制御と疾患機構において重要な役割を担っている。
lncRNA配列の複雑さと多様性、およびその機能機構の限られた知識と発現の調節は、lncRNA研究に重大な課題をもたらす。
- 参考スコア(独自算出の注目度): 12.790491293672632
- License:
- Abstract: Research on long non-coding RNAs (lncRNAs) has garnered significant attention due to their critical roles in gene regulation and disease mechanisms. However, the complexity and diversity of lncRNA sequences, along with the limited knowledge of their functional mechanisms and the regulation of their expressions, pose significant challenges to lncRNA studies. Given the tremendous success of large language models (LLMs) in capturing complex dependencies in sequential data, this study aims to systematically explore the potential and limitations of LLMs in the sequence analysis related to the transcriptional regulation of lncRNA genes. Our extensive experiments demonstrated promising performance of fine-tuned genome foundation models on progressively complex tasks. Furthermore, we conducted an insightful analysis of the critical impact of task complexity, model selection, data quality, and biological interpretability for the studies of the regulation of lncRNA gene expression.
- Abstract(参考訳): 長い非コードRNA(lncRNA)の研究は、遺伝子制御と疾患機構において重要な役割を担っているため、大きな注目を集めている。
しかし、lncRNA配列の複雑さと多様性は、その機能機構の限られた知識と発現の調節と共に、lncRNA研究に重大な課題をもたらす。
本研究は,lncRNA遺伝子の転写調節に関わる配列解析において,LLMの潜在性と限界を体系的に探求することを目的としている。
我々の広範な実験は、段階的に複雑なタスクにおいて、微調整されたゲノム基盤モデルの有望な性能を実証した。
さらに,lncRNA遺伝子の発現調節に関する研究において,タスクの複雑さ,モデル選択,データ品質,生物学的解釈性などの重要な影響について,洞察力のある分析を行った。
関連論文リスト
- Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Codeは、様々な生物学的機能にまたがる包括的なフレームワークである。
Life-Codeは3つのオミクスにまたがる様々なタスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-11T06:53:59Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - COMET: Benchmark for Comprehensive Biological Multi-omics Evaluation Tasks and Language Models [56.81513758682858]
COMETは、シングルオミクス、クロスオミクス、マルチオミクスタスクのモデルを評価することを目的としている。
まず、我々は、DNA、RNA、タンパク質の主要な構造的および機能的側面をカバーする、下流タスクとデータセットの多様なコレクションをキュレートし、開発する。
そこで我々は,DNA,RNA,タンパク質の既存の基礎言語モデルと,新たに提案されたマルチオミクス法を評価する。
論文 参考訳(メタデータ) (2024-12-13T18:42:00Z) - Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
RNAの挙動を理解し予測することは、RNAの構造と相互作用の複雑さのために困難である。
現在のRNAモデルは、タンパク質ドメインで観測された性能とはまだ一致していない。
ChaRNABERTは、確立されたベンチマークでいくつかのタスクで最先端のパフォーマンスに到達することができる。
論文 参考訳(メタデータ) (2024-11-05T21:56:16Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLMはRNA配列の大規模なデータセットを使用して、自己教師付き方法で、意味的に豊かな数値ベクトルで各RNA塩基をどう表現するかを学ぶ。
その中で、二次構造を予測することは、RNAの機能的機構を明らかにするための基本的な課題である。
本稿では,いくつかの事前学習されたRNA-LLMの総合的な実験解析を行い,それらを統合されたディープラーニングフレームワークにおけるRNA二次構造予測タスクと比較する。
論文 参考訳(メタデータ) (2024-10-21T17:12:06Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
本研究では,フローマッチング,すなわちRNACGに基づく普遍的なRNA配列生成モデルを開発する。
RNACGは様々な条件入力に対応でき、可搬性があり、ユーザーは条件入力のために符号化ネットワークをカスタマイズできる。
RNACGは、シーケンス生成およびプロパティ予測タスクに広範な適用性を示す。
論文 参考訳(メタデータ) (2024-07-29T09:46:46Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - Application of Deep Learning on Single-Cell RNA-sequencing Data
Analysis: A Review [17.976898403296275]
単細胞RNAシークエンシング(scRNA-seq)は、数千の単細胞の遺伝子発現プロファイルを同時に定量するために日常的に使用される技術となっている。
人工知能の最近の進歩であるディープラーニングも、scRNA-seqデータ分析のための有望なツールとして登場した。
論文 参考訳(メタデータ) (2022-10-11T17:07:22Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+はRNA言語モデルに基づくディープラーニング手法で、配列から単一鎖RNAの3次元構造を正確に予測する。
RhoFold+はRNA 3D構造予測のための完全に自動化されたエンドツーエンドパイプラインを提供する。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。