Open-Source High-Speed Flight Surrogate Modeling Framework
- URL: http://arxiv.org/abs/2411.03598v1
- Date: Wed, 06 Nov 2024 01:34:06 GMT
- Title: Open-Source High-Speed Flight Surrogate Modeling Framework
- Authors: Tyler E. Korenyi-Both, Nathan J. Falkiewicz, Matthew C. Jones,
- Abstract summary: High-speed flight vehicles, which travel much faster than the speed of sound, are crucial for national defense and space exploration.
accurately predicting their behavior under numerous, varied flight conditions is a challenge and often expensive.
The proposed approach involves creating smarter, more efficient machine learning models.
- Score: 0.0
- License:
- Abstract: High-speed flight vehicles, which travel much faster than the speed of sound, are crucial for national defense and space exploration. However, accurately predicting their behavior under numerous, varied flight conditions is a challenge and often prohibitively expensive. The proposed approach involves creating smarter, more efficient machine learning models (also known as surrogate models or meta models) that can fuse data generated from a variety of fidelity levels -- to include engineering methods, simulation, wind tunnel, and flight test data -- to make more accurate predictions. These models are able to move the bulk of the computation from high performance computing (HPC) to single user machines (laptop, desktop, etc.). The project builds upon previous work but introduces code improvements and an informed perspective on the direction of the field. The new surrogate modeling framework is now modular and, by design, broadly applicable to many modeling problems. The new framework also has a more robust automatic hyperparameter tuning capability and abstracts away most of the pre- and post-processing tasks. The Gaussian process regression and deep neural network-based models included in the presented framework were able to model two datasets with high accuracy (R^2>0.99). The primary conclusion is that the framework is effective and has been delivered to the Air Force for integration into real-world projects. For future work, significant and immediate investment in continued research is crucial. The author recommends further testing and refining modeling methods that explicitly incorporate physical laws and are robust enough to handle simulation and test data from varying resolutions and sources, including coarse meshes, fine meshes, unstructured meshes, and limited experimental test points.
Related papers
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - A Cost-Aware Approach to Adversarial Robustness in Neural Networks [1.622320874892682]
We propose using accelerated failure time models to measure the effect of hardware choice, batch size, number of epochs, and test-set accuracy.
We evaluate several GPU types and use the Tree Parzen Estimator to maximize model robustness and minimize model run-time simultaneously.
arXiv Detail & Related papers (2024-09-11T20:43:59Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - STORM: Efficient Stochastic Transformer based World Models for
Reinforcement Learning [82.03481509373037]
Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.
We introduce Transformer-based wORld Model (STORM), an efficient world model architecture that combines strong modeling and generation capabilities.
Storm achieves a mean human performance of $126.7%$ on the Atari $100$k benchmark, setting a new record among state-of-the-art methods.
arXiv Detail & Related papers (2023-10-14T16:42:02Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - Progressive reduced order modeling: empowering data-driven modeling with
selective knowledge transfer [0.0]
We propose a progressive reduced order modeling framework that minimizes data cravings and enhances data-driven modeling's practicality.
Our approach selectively transfers knowledge from previously trained models through gates, similar to how humans selectively use valuable knowledge while ignoring unuseful information.
We have tested our framework in several cases, including transport in porous media, gravity-driven flow, and finite deformation in hyperelastic materials.
arXiv Detail & Related papers (2023-10-04T23:50:14Z) - Physics-informed linear regression is a competitive approach compared to
Machine Learning methods in building MPC [0.8135412538980287]
We show that control in general leads to satisfactory reductions in heating and cooling energy compared to the building's baseline controller.
We also see that the physics-informed ARMAX models have a lower computational burden, and a superior sample efficiency compared to the Machine Learning based models.
arXiv Detail & Related papers (2021-10-29T16:56:05Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.