論文の概要: Generalized Trusted Multi-view Classification Framework with Hierarchical Opinion Aggregation
- arxiv url: http://arxiv.org/abs/2411.03713v1
- Date: Wed, 06 Nov 2024 07:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:22:59.885429
- Title: Generalized Trusted Multi-view Classification Framework with Hierarchical Opinion Aggregation
- Title(参考訳): 階層的オピニオンアグリゲーションを用いた総合信頼度多ビュー分類フレームワーク
- Authors: Long Shi, Chuanqing Tang, Huangyi Deng, Cai Xu, Lei Xing, Badong Chen,
- Abstract要約: 階層的な意見集約を伴う一般化された多視点分類フレームワークを提案する。
イントラアグリゲーションでは、各ビューは、他のビューと共有される共通情報と、その特定の情報で構成されていると仮定する。
ビュー間のアグリゲーションにおいて、異なる視点からの意見アグリゲーションを促進するために、エビデンスレベルでアグリゲーションメカニズムを設計する。
- 参考スコア(独自算出の注目度): 22.064806439209462
- License:
- Abstract: Recently, multi-view learning has witnessed a considerable interest on the research of trusted decision-making. Previous methods are mainly inspired from an important paper published by Han et al. in 2021, which formulates a Trusted Multi-view Classification (TMC) framework that aggregates evidence from different views based on Dempster's combination rule. All these methods only consider inter-view aggregation, yet lacking exploitation of intra-view information. In this paper, we propose a generalized trusted multi-view classification framework with hierarchical opinion aggregation. This hierarchical framework includes a two-phase aggregation process: the intra-view and inter-view aggregation hierarchies. In the intra aggregation, we assume that each view is comprised of common information shared with other views, as well as its specific information. We then aggregate both the common and specific information. This aggregation phase is useful to eliminate the feature noise inherent to view itself, thereby improving the view quality. In the inter-view aggregation, we design an attention mechanism at the evidence level to facilitate opinion aggregation from different views. To the best of our knowledge, this is one of the pioneering efforts to formulate a hierarchical aggregation framework in the trusted multi-view learning domain. Extensive experiments show that our model outperforms some state-of-art trust-related baselines.
- Abstract(参考訳): 近年、多視点学習は、信頼できる意思決定の研究にかなりの関心を抱いている。
従来の手法は主に、2021年にHanらによって出版された重要な論文から着想を得ており、これは、デンプスターの組合せ則に基づいて異なる視点から証拠を集約するTrusted Multi-view Classification (TMC) フレームワークを定式化したものである。
これらの手法はビュー間のアグリゲーションのみを考慮し、ビュー内情報の活用を欠いている。
本稿では,階層的な意見集約を伴う一般化された多視点分類フレームワークを提案する。
この階層化フレームワークは、ビュー内およびビュー間階層という2段階の集約プロセスを含む。
集約において、各ビューは、他のビューと共有される共通情報と、その特定の情報で構成されていると仮定する。
次に、共通情報と特定情報の両方を集約します。
このアグリゲーションフェーズは、ビュー自体に固有の特徴ノイズを排除し、ビュー品質を向上させるのに有用である。
ビュー間のアグリゲーションにおいて、異なる視点からの意見アグリゲーションを促進するために、エビデンスレベルでアグリゲーションメカニズムを設計する。
私たちの知る限りでは、これは信頼できる多視点学習領域において階層的な集約フレームワークを定式化するための先駆的な取り組みの1つです。
大規模な実験により、我々のモデルは、最先端の信頼関係のベースラインよりも優れていることが示された。
関連論文リスト
- Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
マルチビュークラスタリング(DALMC)のための識別的アンカー学習を提案する。
元のデータセットに基づいて、識別的なビュー固有の特徴表現を学習する。
これらの表現に基づいて異なるビューからアンカーを構築することで、共有アンカーグラフの品質が向上します。
論文 参考訳(メタデータ) (2024-09-25T13:11:17Z) - Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
この研究は、データリカバリとアライメントを階層的に一貫した方法で融合し、異なるビュー間の相互情報を最大化するディープMVCフレームワークを提案する。
私たちの知る限りでは、これは欠落したデータ問題と不整合データ問題に異なる学習パラダイムで別々に対処する最初の試みになるかもしれません。
論文 参考訳(メタデータ) (2023-10-28T06:43:57Z) - GCFAgg: Global and Cross-view Feature Aggregation for Multi-view
Clustering [45.530950521907265]
マルチビュークラスタリングは、教師なしの方法でコンセンサス表現を学習することで、データサンプルをカテゴリに分割することができる。
GggMVC(Global and Cross-view Feature aggregate for Multi-View Clustering)と呼ばれる新しいマルチビュークラスタリングネットワークを提案する。
提案手法は,完全多視点データクラスタリングタスクと不完全多視点データクラスタリングタスクの両方において,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-05-11T13:41:13Z) - Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification [78.15629210659516]
本稿ではRANKという不完全なマルチビュー部分的マルチラベル分類ネットワークを提案する。
既存の手法に固有のビューレベルの重みを分解し、各サンプルのビューに品質スコアを動的に割り当てる品質対応サブネットワークを提案する。
我々のモデルは、完全なマルチビューマルチラベルデータセットを処理できるだけでなく、欠落したインスタンスやラベルを持つデータセットでも機能する。
論文 参考訳(メタデータ) (2023-03-30T03:09:25Z) - Multi-View Clustering from the Perspective of Mutual Information [0.0]
Informative Multi-View Clustering (IMVC) と呼ばれる情報理論に基づく新しいモデルを提案する。
IMVCは、多視点データに隠された共通かつビュー固有の情報を抽出し、クラスタリング指向の包括的な表現を構築する。
本研究では,6つのベンチマークデータセットについて広範な実験を行い,IMVCが他の手法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2023-02-17T07:49:27Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
本稿では,最適コンセンサスを近似する凝集分析法を提案する。
本稿では,制約付きラプラシアンランクに基づくANN(Agglomerative Neural Network)を用いて,マルチビューデータをクラスタリングする。
4つの一般的なデータセットに対する最先端のマルチビュークラスタリング手法に対する我々の評価は、ANNの有望なビュー・コンセンサス分析能力を示している。
論文 参考訳(メタデータ) (2020-05-12T05:39:10Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
本研究では,複数のビューが一貫した情報を含み,それぞれのビューが相補的な情報を含むマルチビュークラスタリングの問題について検討する。
本稿では、一貫したグラフ正規化マルチビューサブスペースクラスタリング(GRMSC)を含む手法を提案する。
目的関数は多視点クラスタリングを実現するために拡張ラグランジアン乗算法により最適化される。
論文 参考訳(メタデータ) (2020-04-07T03:48:08Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。