論文の概要: PX2Tooth: Reconstructing the 3D Point Cloud Teeth from a Single Panoramic X-ray
- arxiv url: http://arxiv.org/abs/2411.03725v1
- Date: Wed, 06 Nov 2024 07:44:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:28.059215
- Title: PX2Tooth: Reconstructing the 3D Point Cloud Teeth from a Single Panoramic X-ray
- Title(参考訳): PX2Tooth:パノラマX線から3Dポイントのクラウド歯を再構築
- Authors: Wen Ma, Huikai Wu, Zikai Xiao, Yang Feng, Jian Wu, Zuozhu Liu,
- Abstract要約: PX2Toothは2段階の枠組みで1枚のPX画像を用いて3次元歯の再構成を行う新しい手法である。
まず、PXSegNetを設計し、PX画像から永久歯を分割し、各歯の位置、形態、分類情報を提供する。
その後、ランダムな点雲を3次元歯に変換する新しい歯生成ネットワーク(TGNet)を設計する。
- 参考スコア(独自算出の注目度): 20.913080797758816
- License:
- Abstract: Reconstructing the 3D anatomical structures of the oral cavity, which originally reside in the cone-beam CT (CBCT), from a single 2D Panoramic X-ray(PX) remains a critical yet challenging task, as it can effectively reduce radiation risks and treatment costs during the diagnostic in digital dentistry. However, current methods are either error-prone or only trained/evaluated on small-scale datasets (less than 50 cases), resulting in compromised trustworthiness. In this paper, we propose PX2Tooth, a novel approach to reconstruct 3D teeth using a single PX image with a two-stage framework. First, we design the PXSegNet to segment the permanent teeth from the PX images, providing clear positional, morphological, and categorical information for each tooth. Subsequently, we design a novel tooth generation network (TGNet) that learns to transform random point clouds into 3D teeth. TGNet integrates the segmented patch information and introduces a Prior Fusion Module (PFM) to enhance the generation quality, especially in the root apex region. Moreover, we construct a dataset comprising 499 pairs of CBCT and Panoramic X-rays. Extensive experiments demonstrate that PX2Tooth can achieve an Intersection over Union (IoU) of 0.793, significantly surpassing previous methods, underscoring the great potential of artificial intelligence in digital dentistry.
- Abstract(参考訳): 2DパノラマX線 (PX) を1本の2DパノラマX線からCBCT(cone-beam CT)に挿入した口腔の3D解剖学的構造を再構築することは、デジタル歯科における診断における放射線リスクと治療コストを効果的に低減できるため、重要な課題である。
しかし、現在の手法はエラーを起こしやすいか、小さなデータセット(50件未満)でのみ訓練・評価され、信頼性が損なわれる。
本稿では,PX2Toothについて述べる。PX2Toothは2段階の枠組みで1枚のPX画像を用いて3次元歯の再構成を行う新しい手法である。
まず、PXSegNetを設計し、PX画像から永久歯を分割し、各歯の位置、形態、分類情報を提供する。
その後、ランダムな点雲を3次元歯に変換する新しい歯生成ネットワーク(TGNet)を設計する。
TGNetはセグメント化されたパッチ情報を統合し、特にルート頂点領域における生成品質を高めるためにプリエント・フュージョン・モジュール(PFM)を導入する。
さらに,CBCTとパノラマX線の499対からなるデータセットを構築した。
大規模な実験により、PX2Toothは0.793のIoU(Intersection over Union)を達成でき、従来の方法を大幅に上回っており、デジタル歯科における人工知能の大きな可能性を示している。
関連論文リスト
- 3D Teeth Reconstruction from Panoramic Radiographs using Neural Implicit
Functions [6.169259577480194]
Occudentは神経暗黙機能を用いたパノラマX線写真からの3次元歯の再構築のための枠組みである。
合成画像を用いた最近の研究とは異なる、実際のパノラマラジオグラフィーを入力として訓練し、検証する。
論文 参考訳(メタデータ) (2023-11-28T05:06:22Z) - TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry
Guided Transformer [47.18526074157094]
歯科用歯冠および歯肉の詳細な3D情報を提供するために, 歯科用光学式歯内スキャナー (IOS) が広く用いられている。
既往の方法は複雑な境界においてエラーを起こしやすく、患者間で不満足な結果を示す。
マルチタスク3Dトランスフォーマアーキテクチャを用いて, 歯の局所的および大域的依存関係とIOS点群における歯肉の象牙質の両方をキャプチャするTSegFormerを提案する。
論文 参考訳(メタデータ) (2023-11-22T08:45:01Z) - Radious: Unveiling the Enigma of Dental Radiology with BEIT Adaptor and
Mask2Former in Semantic Segmentation [0.0]
BEITアダプタとMask2Formerを用いたセマンティックセグメンテーションアルゴリズムを開発した。
我々は,Deeplabv3とSegformerという2つの画像セグメント化アルゴリズムと比較した。
その結果,Radiousは,Deeplabv3+とSegformerのmIoUスコアを9%,Segformerで33%増加させることで,これらのアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2023-05-10T15:15:09Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - An Implicit Parametric Morphable Dental Model [79.29420177904022]
歯および歯茎の3次元異形性モデルとして, 第一報を提出した。
これは、各歯と歯茎のコンポーネントワイド表現と、これら各コンポーネントの学習可能な潜在コードに基づいている。
我々の復元品質は、新しいアプリケーションを実現しつつ、最も先進的なグローバルな暗黙の表現と同等です。
論文 参考訳(メタデータ) (2022-11-21T12:23:54Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - X2Teeth: 3D Teeth Reconstruction from a Single Panoramic Radiograph [14.187615351160021]
我々は,タスクを歯の局在化と単一形状推定に分解する新しいConvNet X2Teethを開発した。
X2Teeth は 0.681 の再構成 IoU を達成し、エンコーダデコーダ法を $1.71X で、検索ベース法を $1.52X で大幅に上回っている。
論文 参考訳(メタデータ) (2021-08-30T06:12:58Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
両平面X線画像から直接膝骨を3次元再構成するためのエンドツーエンド畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2020-04-02T08:37:11Z) - Oral-3D: Reconstructing the 3D Bone Structure of Oral Cavity from 2D
Panoramic X-ray [17.34835093235681]
歯科用アーチの1枚のPX画像と先行情報から3次元口腔を再構築するフレームワークOral-3Dを提案する。
口腔3Dは, 3次元口腔構造を効率的にかつ効果的に再構築し, 臨床応用において重要な情報を示すことができることを示す。
論文 参考訳(メタデータ) (2020-03-18T18:02:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。