Overcoming label shift in targeted federated learning
- URL: http://arxiv.org/abs/2411.03799v1
- Date: Wed, 06 Nov 2024 09:52:45 GMT
- Title: Overcoming label shift in targeted federated learning
- Authors: Edvin Listo Zec, Adam Breitholtz, Fredrik D. Johansson,
- Abstract summary: Federated learning enables multiple actors to collaboratively train models without sharing private data.
One common violation is label shift, where the label distributions differ across clients or between clients and the target domain.
We propose FedPALS, a novel model aggregation scheme that adapts to label shifts by leveraging knowledge of the target label distribution at the central server.
- Score: 8.223143536605248
- License:
- Abstract: Federated learning enables multiple actors to collaboratively train models without sharing private data. This unlocks the potential for scaling machine learning to diverse applications. Existing algorithms for this task are well-justified when clients and the intended target domain share the same distribution of features and labels, but this assumption is often violated in real-world scenarios. One common violation is label shift, where the label distributions differ across clients or between clients and the target domain, which can significantly degrade model performance. To address this problem, we propose FedPALS, a novel model aggregation scheme that adapts to label shifts by leveraging knowledge of the target label distribution at the central server. Our approach ensures unbiased updates under stochastic gradient descent, ensuring robust generalization across clients with diverse, label-shifted data. Extensive experiments on image classification demonstrate that FedPALS consistently outperforms standard baselines by aligning model aggregation with the target domain. Our findings reveal that conventional federated learning methods suffer severely in cases of extreme client sparsity, highlighting the critical need for target-aware aggregation. FedPALS offers a principled and practical solution to mitigate label distribution mismatch, ensuring models trained in federated settings can generalize effectively to label-shifted target domains.
Related papers
- Optimizing Federated Learning by Entropy-Based Client Selection [13.851391819710367]
Deep learning domains typically require an extensive amount of data for optimal performance.
FedOptEnt is designed to mitigate performance issues caused by label distribution skew.
The proposed method outperforms several state-of-the-art algorithms by up to 6% in classification accuracy.
arXiv Detail & Related papers (2024-11-02T13:31:36Z) - Federated Learning with Label-Masking Distillation [33.80340338038264]
Federated learning provides a privacy-preserving manner to collaboratively train models on data distributed over multiple local clients.
Due to the different user behavior of the client, label distributions between different clients are significantly different.
We propose a label-masking distillation approach termed FedLMD to facilitate federated learning via perceiving the various label distributions of each client.
arXiv Detail & Related papers (2024-09-20T00:46:04Z) - Federated Learning with Only Positive Labels by Exploring Label Correlations [78.59613150221597]
Federated learning aims to collaboratively learn a model by using the data from multiple users under privacy constraints.
In this paper, we study the multi-label classification problem under the federated learning setting.
We propose a novel and generic method termed Federated Averaging by exploring Label Correlations (FedALC)
arXiv Detail & Related papers (2024-04-24T02:22:50Z) - FedAnchor: Enhancing Federated Semi-Supervised Learning with Label
Contrastive Loss for Unlabeled Clients [19.3885479917635]
Federated learning (FL) is a distributed learning paradigm that facilitates collaborative training of a shared global model across devices.
We propose FedAnchor, an innovative FSSL method that introduces a unique double-head structure, called anchor head, paired with the classification head trained exclusively on labeled anchor data on the server.
Our approach mitigates the confirmation bias and overfitting issues associated with pseudo-labeling techniques based on high-confidence model prediction samples.
arXiv Detail & Related papers (2024-02-15T18:48:21Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed on unseen target domains.
Probability pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time.
Variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels.
arXiv Detail & Related papers (2023-07-08T18:58:08Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
Clustered learning has been shown to produce promising results by grouping clients into clusters.
Existing FL algorithms are essentially trying to group clients together with similar distributions.
Prior FL algorithms attempt similarities indirectly during training.
arXiv Detail & Related papers (2022-09-21T17:37:54Z) - Anomaly Detection through Unsupervised Federated Learning [0.0]
Federated learning is proving to be one of the most promising paradigms for leveraging distributed resources.
We propose a novel method in which, through a preprocessing phase, clients are grouped into communities.
The resulting anomaly detection model is then shared and used to detect anomalies within the clients of the same community.
arXiv Detail & Related papers (2022-09-09T08:45:47Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy.
We consider a more practical scenario where the distributed client data is unlabeled, and a centralized labeled dataset is available on the server.
We propose an effective DualAdapt method to address the new challenges.
arXiv Detail & Related papers (2021-08-17T17:53:05Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.