Whispers of Data: Unveiling Label Distributions in Federated Learning Through Virtual Client Simulation
- URL: http://arxiv.org/abs/2504.21436v1
- Date: Wed, 30 Apr 2025 08:51:06 GMT
- Title: Whispers of Data: Unveiling Label Distributions in Federated Learning Through Virtual Client Simulation
- Authors: Zhixuan Ma, Haichang Gao, Junxiang Huang, Ping Wang,
- Abstract summary: Federated Learning enables collaborative training of a global model across multiple geographically dispersed clients without the need for data sharing.<n>It is susceptible to inference attacks, particularly label inference attacks.<n>We propose a novel label distribution inference attack that is stable and adaptable to various scenarios.
- Score: 4.81392127803963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning enables collaborative training of a global model across multiple geographically dispersed clients without the need for data sharing. However, it is susceptible to inference attacks, particularly label inference attacks. Existing studies on label distribution inference exhibits sensitive to the specific settings of the victim client and typically underperforms under defensive strategies. In this study, we propose a novel label distribution inference attack that is stable and adaptable to various scenarios. Specifically, we estimate the size of the victim client's dataset and construct several virtual clients tailored to the victim client. We then quantify the temporal generalization of each class label for the virtual clients and utilize the variation in temporal generalization to train an inference model that predicts the label distribution proportions of the victim client. We validate our approach on multiple datasets, including MNIST, Fashion-MNIST, FER2013, and AG-News. The results demonstrate the superiority of our method compared to state-of-the-art techniques. Furthermore, our attack remains effective even under differential privacy defense mechanisms, underscoring its potential for real-world applications.
Related papers
- FedSV: Byzantine-Robust Federated Learning via Shapley Value [1.7446992240872337]
We present a powerful defense against malicious clients in Federated Learning (FL) using the Shapley Value (SV)<n>Our approach makes the identification of malicious clients more robust, since during the learning phase, it estimates the contribution of each client according to the different groups to which the target client belongs.
arXiv Detail & Related papers (2025-02-24T07:51:54Z) - Overcoming label shift in targeted federated learning [8.223143536605248]
Federated learning enables multiple actors to collaboratively train models without sharing private data.
One common violation is label shift, where the label distributions differ across clients or between clients and the target domain.
We propose FedPALS, a novel model aggregation scheme that adapts to label shifts by leveraging knowledge of the target label distribution at the central server.
arXiv Detail & Related papers (2024-11-06T09:52:45Z) - Federated Learning with Only Positive Labels by Exploring Label Correlations [78.59613150221597]
Federated learning aims to collaboratively learn a model by using the data from multiple users under privacy constraints.
In this paper, we study the multi-label classification problem under the federated learning setting.
We propose a novel and generic method termed Federated Averaging by exploring Label Correlations (FedALC)
arXiv Detail & Related papers (2024-04-24T02:22:50Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuard is a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks.
The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks.
arXiv Detail & Related papers (2024-03-05T17:41:35Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
We introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning.
Specifically, we propose a novel algorithm called emphFedABML, which employs hierarchical variational inference across clients.
Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data.
arXiv Detail & Related papers (2023-07-05T11:58:58Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
We introduce sampling attack, a novel membership inference technique that unlike other standard membership adversaries is able to work under severe restriction of no access to scores of the victim model.
We show that a victim model that only publishes the labels is still susceptible to sampling attacks and the adversary can recover up to 100% of its performance.
For defense, we choose differential privacy in the form of gradient perturbation during the training of the victim model as well as output perturbation at prediction time.
arXiv Detail & Related papers (2020-09-01T12:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.